Skip to main content
Log in

Influence of environmental conditions on foraging behaviour and its consequences on reproductive performance in little penguins

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

During the breeding season, seabirds are central place foragers and have to adapt their foraging behaviour in response to environmental variation to maximize efficiency and reproductive output. Due to its small size and swimming mode of transport, the little penguin (Eudyptula minor) is expected to be greatly susceptible to such fluctuations. The links between local-, meso- and macro-scale environmental conditions and inter-annual variation in foraging behaviour and reproductive performance of little penguins were investigated during three consecutive breeding seasons at two colonies in south-eastern Australia marked by contrasting oceanographic conditions. At a local scale, foraging effort was correlated positively with wind direction and negatively with wave height. At a regional scale, foraging effort of individuals from both colonies was negatively correlated with higher sea surface temperature (SST) off the Bonney Coast in the previous Austral summer, suggesting a weaker Bonney Upwelling event and a cascade of effects throughout the Bass Strait region. At a larger scale, the El Niño Southern Oscillation was also found to correlate with foraging behaviour, with lower foraging effort being observed during La Niña event. Although individuals increased their foraging effort during years with poorer conditions, they were not able to maintain high breeding success. In addition, peak egg-laying was found to coincide with a decrease in local SST and a peak of sea surface chlorophyll-a concentration. In conclusion, these results highlight how different environmental conditions could influence foraging behaviour and ultimately reproductive success of little penguins. It also showed that under certain circumstances, these individual strategies were not sufficient to cope with environmental variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agnew P, Lalas C, Wright J, Dawson S (2013) Effects of attached data-logging devices on little penguins (Eudyptula minor). Mar Biol 160:2375–2382. doi:10.1007/s00227-013-2231-7

    Article  Google Scholar 

  • Ainley DG, Sydeman WJ, Norton J (1995) Upper trophic level predators indicate interannual negative and positive anomalies in the California current food web. MEPS 118:69–79

    Article  Google Scholar 

  • Arnold TW (2010) Uninformative parameters and model selection using Akaike’s information criterion. J Wildl Manag 74:1175–1178

    Article  Google Scholar 

  • Arnould J, Dann P, Cullen J (2004) Determining the sex of Little Penguins (Eudyptula minor) in northern Bass Strait using morphometric measurements. Emu 104:261–265. doi:10.1071/MU04035

    Article  Google Scholar 

  • Ashmole NP (1971) Seabird ecology and the marine environment. In: Farner DS, King JR (eds) Avian biology. Academic Press, New York, pp 223–286

    Google Scholar 

  • Ashok K, Guan Z, Yamagat T (2003) Influence of the Indian Ocean dipole on the Australian winter rainfall. Geophys Res Lett 30:1821. doi:10.1029/2003GL017926

    Article  Google Scholar 

  • Banks SC, Ling SD, Johnson CR, Piggott MP, Williamson JE, Beheregaray LB (2010) Genetic structure of a recent climate change-driven range extension. Mol Ecol 19:2011–2024. doi:10.1111/j.1365-294X.2010.04627.x

    Article  Google Scholar 

  • Behrenfeld MJ, Randerson JT, McClain CR, Feldman GC, Los SO, Tucker CJ, Falkowski PG, Field CB, Frouin R, Esaias WE, Kolber DD, Pollack NH (2001) Biospheric primary production during an ENSO transition. Science 291:2594–2597. doi:10.1126/science.1055071

    Article  CAS  Google Scholar 

  • Berlincourt M, Arnould JP (2014) At-sea associations in foraging little Penguins. PLoS One 9:e105065

    Article  Google Scholar 

  • Bivand R, Lewin-Koh N (2014) Maptools: tools for reading and handling spatial objects. R package version 0.8-29. http://CRAN.R-project.org/package=maptools

  • Boersma PD (1976) An ecological and behavioral study of the Galapagos penguin. Living Bird 15:43–93

    Google Scholar 

  • Brown CJ, Fulton EA, Hobday AJ, Matear RJ, Possingham HP, Bulman C, Christensen V, Forrest RE, Gehrke PC, Gribble NA, Griffiths SP, Lozano-Montes H, Martin JM, Metcalf S, Okey TA, Watson R, Richardson AJ (2010) Effects of climate-driven primary production change on marine food webs: implications for fisheries and conservation. Glob Change Biol 16:1194–1212. doi:10.1111/j.1365-2486.2009.02046.x

    Article  Google Scholar 

  • Burke CM, Montevecchi WA (2009) The foraging decisions of a central place foraging seabird in response to fluctuations in local prey conditions. J Zool 278:354–361. doi:10.1111/j.1469-7998.2009.00584.x

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, Berlin

    Google Scholar 

  • Butler PJ (2000) Energetic costs of surface swimming and diving of birds. Physiol Biochem Zool. doi:10.1086/318111

    Google Scholar 

  • Butler A, Althaus F, Furlani D, Ridgway K (2002) Assessment of the conservation values of the Bonney upwelling area: a component of the Commonwealth Marine Conservation Assessment Program 2002–2004: report to the environment Australia, CSIRO marine research. http://www.environment.gov.au/coasts/mpa/publications/pubs/conservation-assessment-bonney.pdf

  • Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519. doi:10.1016/j.ecolmodel.2006.03.017

    Article  Google Scholar 

  • Cannell BL, Cullen J (1998) The foraging behaviour of little penguins Eudyptula minor at different light levels. Ibis 140:467–471

    Article  Google Scholar 

  • Cannell BL, Chambers LE, Wooller RD, Bradley JS (2012) Poorer breeding by little penguins near Perth, Western Australia is correlated with above average sea surface temperatures and a stronger Leeuwin current. Mar Freshw Res 63:914–925. doi:10.1071/mf12139

    Article  Google Scholar 

  • Castillo J, Barbieri MA, Gonzales A (1996) Relationships between sea surface temperature, salinity and pelagic fish distribution off northern Chile. ICES J Mar Sci 53:139–146. doi:10.1006/jmsc.1996.0014

    Article  Google Scholar 

  • Chambers LE (2004) Delayed breeding in little Penguins—evidence of climate change? Aust Meteorol Mag 53:13–19

    Google Scholar 

  • Chambers LE, Altwegg R, Barbraud C, Barnard P, Beaumont LJ, Crawford RJ, Durant JM, Hughes L, Keatley MR, Low M, Morellato PC, Poloczanska ES, Ruoppolo V, Vanstreels RE, Woehler EJ, Wolfaardt AC (2013) Phenological changes in the southern hemisphere. PLoS One 8:e75514. doi:10.1371/journal.pone.0075514

    Article  CAS  Google Scholar 

  • Chambers LE, Patterson T, Hobday AJ, Arnould JPY, Tuck GN, Wilcox C, Dann P (2014) Determining trends and environmental drivers from long-term marine mammal and seabird data: examples from Southern Australia. Reg Environ Change. doi:10.1007/s10113-014-0634-8

    Google Scholar 

  • Charrassin J-B, Le Maho Y, Bost C-A (2002) Seasonal changes in the diving parameters of king penguins (Aptenodytes patagonicus). Mar Biol 141:581–589

    Article  Google Scholar 

  • Chastel O, Weimerskirch H, Jouventin P (1995) Body condition and seabird reproductive performance : a study of three petrel species. Ecology 76:2240–2246

    Article  Google Scholar 

  • Chiaradia A, Ropert-Coudert Y, Kato A, Mattern T, Yorke J (2007) Diving behaviour of little Penguins from four colonies across their whole distribution range: bathymetry affecting diving effort and fledging success. Mar Biol 151:1535–1542

    Article  Google Scholar 

  • Chiaradia A, Forero MG, Hobson KA, Cullen JM (2010) Changes in diet and trophic position of a top predator 10 years after a mass mortality of a key prey. ICES J Mar Sci 67:1710–1720

    Article  Google Scholar 

  • Collins M, Cullen J, Dann P (1999) Seasonal and annual foraging movements of little penguins from Phillip Island, Victoria. Wildl Res 26:705–721. doi:10.1071/WR98003

    Article  Google Scholar 

  • Croxall J, Reid K, Prince P (1999) Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill. MEPS 177:115–131

    Article  Google Scholar 

  • Cullen J, Chambers L, Coutin P, Dann P (2009) Predicting onset and success of breeding in little penguins Eudyptula minor from ocean temperatures. MEPS 378:269–278. doi:10.3354/meps07881

    Article  Google Scholar 

  • Dall SR, Boyd IL (2002) Provisioning under the risk of starvation. Evol Ecol Res 4:883–896

    Google Scholar 

  • Dann P, Chambers L (2013) Ecological effects of climate change on little penguins Eudyptula minor and the potential economic impact on tourism. Clim Res 58:67–79. doi:10.3354/cr01187

    Article  Google Scholar 

  • Drent R, Daan S (1980) The prudent parent: energetic adjustments in avian breeding. Ardea 68:225–252

    Google Scholar 

  • Erikstad KE, Sandvik H, Fauchald P, Tveraa T (2009) Short-and long-term consequences of reproductive decisions: an experimental study in the puffin. Ecology 90:3197–3208. doi:10.1890/08-1778.1

    Article  Google Scholar 

  • Finney SK, Wanless S, Harris MP (1999) The effect of weather conditions on the feeding behaviour of a diving bird, the Common Guillemot Uria aalge. J Avian Biol 30:23–30

    Article  Google Scholar 

  • Fraser MM, Lalas C (2004) Seasonal variation in the diet of blue penguins (Eudyptula minor) at Oamaru, New Zealand. Notornis 51:7–15

    Google Scholar 

  • Frederiksen M, Wanless S, Harris MP, Rothery P, Wilson LJ (2004) The role of industrial fisheries and oceanographic change in the decline of North Sea black-legged kittiwakes. J Appl Ecol 41:1129–1139. doi:10.1111/j.0021-8901.2004.00966.x

    Article  Google Scholar 

  • Frederiksen M, Edwards M, Richardson AJ, Halliday NC, Wanless S (2006) From plankton to top predators: bottom-up control of a marine food web across four trophic levels. J Anim Ecol 75:1259–1268. doi:10.1111/j.1365-2656.2006.01148.x

    Article  Google Scholar 

  • Fullagar PJ, Heyligers PC, Crowley MA, Klomp NI (1995) Gabo Island penguin survey November 1994. Moruya, NSW

    Google Scholar 

  • Furness RW, Camphuysen KCJ (1997) Seabirds as monitors of the marine environment. ICES J Mar Sci 54:726–737

    Article  Google Scholar 

  • Gales R (1985) Breeding seasons and double brooding of the Little Penguin Eudyptula minor in New Zealand. Emu 85:127–130. doi:10.1071/MU9850127

    Article  Google Scholar 

  • Georges JY, Bonadonna F, Guinet C (2000) Foraging habitat and diving activity of lactating subantractic fur seals in relation to sea-surface temperature at Amsterdam Island. MEPS 196:291–304

    Article  Google Scholar 

  • Gibbens J, Arnould JPY (2009) Interannual variation in pup production and the timing of breeding in benthic foraging Australian fur seals. Mar Mamm Sci 25:573–587. doi:10.1111/j.1748-7692.2008.00270.x

    Article  Google Scholar 

  • Gibbs C (1992) Oceanography of Bass Strait: implications for the food supply of little Penguins Eudyptula minor. Emu 91:395–401. doi:10.1071/MU9910395

    Article  Google Scholar 

  • Gibbs C, Tomczak M Jr, Longmore A (1986) The nutrient regime of Bass Strait. Mar Freshw Res 37:451–466. doi:10.1071/MF9860451

    Article  CAS  Google Scholar 

  • Gill P (2004) Ecological linkages within the Bonney Upwelling blue whale feeding area. School of Life and Sciences, Warnambool

    Google Scholar 

  • Guinet C, Dubroca L, Lea MA, Goldsworthy S, Cherel Y, Duhamel G, Bonadonna F, Donnay J-P (2001) Spatial distribution of foraging in female Antarctic fur seals Arctocephalus gazella in relation to oceanographic variables: a scale-dependent approach using geographic information systems. MEPS 219:251–264

    Article  Google Scholar 

  • Hansen J, Martos P, Madirolas A (2001) Relationship between spatial distribution of the Patagonian stock of Argentine anchovy, Engraulis anchoita, and sea temperatures during late spring to early summer. Fish Oceanogr 10:193–206. doi:10.1046/j.1365-2419.2001.00166.x

    Article  Google Scholar 

  • Hill KL, Rintoul SR, Coleman R, Ridgway KR (2008) Wind forced low frequency variability of the East Australia Current. Geophys Res Lett. doi:10.1029/2007gl032912

    Google Scholar 

  • Hobday AJ, Hartog JR (2014) Derived ocean features for Dynamic Ocean management. Oceanography 27:134–145

    Article  Google Scholar 

  • Hobday AJ, Pecl GT (2013) Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev Fish Biol Fish 24:415–425. doi:10.1007/s11160-013-9326-6

    Article  Google Scholar 

  • Horning M, Trillmich F (1997) Ontogeny of diving behaviour in the Galapagos fur seal. Behaviour 134:1211–1257

    Article  Google Scholar 

  • Hoskins AJ, Dann P, Ropert-Coudert Y, Kato A, Chiaradia A, Costa DP, Arnould JP (2008) Foraging behaviour and habitat selection of the little penguin Eudyptula minor during early chick rearing in Bass Strait, Australia. MEPS 366:293–303. doi:10.3354/meps07507

    Article  Google Scholar 

  • Hunt GL (1991) Occurrence of polar seabirds at sea in relation to prey concentrations and oceanographic factors. In: Sakshaug E, Hopkins CCE, Øritsland NA (eds). Proceedings of the pro mare symposium on polar marine ecology, Trondheim, pp 553–559

  • Johannesen E, Houston D, Russell J (2003) Increased survival and breeding performance of double breeders in little penguins Eudyptula minor, New Zealand: evidence for individual bird quality? J Avian Biol 34:198–210

    Article  Google Scholar 

  • Jouventin P, Weimerskirch H (1990) Satellite tracking of wandering albatrosses. Nature 343:746–748

    Article  Google Scholar 

  • Klomp N, Wooller R (1988) Diet of little penguins, Eudyptula minor, from Penguin Island, western Australia. Mar Freshw Res 39:633–639

    Article  Google Scholar 

  • Lescroël A, Dugger KM, Ballard G, Ainley DG (2009) Effects of individual quality, reproductive success and environmental variability on survival of a long-lived seabird. J Anim Ecol 78:798–806. doi:10.1111/j.1365-2656.2009.01542.x

    Article  Google Scholar 

  • Lewis S, Wanless S, Elston DA, Schultz MD, Mackley E, Du Toit M, Underhill JG, Harris MP (2006) Determinants of quality in a long-lived colonial species. J Anim Ecol 75:1304–1312. doi:10.1111/j.1365-2656.2006.01152.x

    Article  Google Scholar 

  • Ling SD, Johnson CR, Ridgway K, Hobday AJ, Haddon M (2009) Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Glob Change Biol 15:719–731. doi:10.1111/j.1365-2486.2008.01734.x

    Article  Google Scholar 

  • Luque SP (2007) Diving behaviour analysis in R. R News 7:8–14

    Google Scholar 

  • Lynnes A, Reid K, Croxall J, Trathan P (2002) Conflict or co-existence? Foraging distribution and competition for prey between Adélie and Chinstrap Penguins. Mar Biol 141:1165–1174

    Article  Google Scholar 

  • McConnell B, Chambers C, Fedak M (1992) Foraging ecology of southern elephant seals in relation to the bathymetry and productivity of the Southern Ocean. Antarct Sci 4:393–398

    Article  Google Scholar 

  • Mickelson M, Dann P, Cullen J (1992) Sea temperature in Bass Strait and breeding success of the little Penguin Eudyptula minor at Phillip Island, south-eastern Australia. Emu 91:355–368

    Article  Google Scholar 

  • Middleton JF, Bye JA (2007) A review of the shelf-slope circulation along Australia’s southern shelves: cape Leeuwin to Portland. Prog Oceanogr 75:1–41

    Article  Google Scholar 

  • Neira FJ, Keane JP (2008) Ichthyoplankton-based spawning dynamics of blue mackerel (Scomber australasicus) in south-eastern Australia: links to the East Australian Current. Fish Oceanogr 17:281–298. doi:10.1111/j.1365-2419.2008.00479.x

    Article  Google Scholar 

  • Nieblas AE, Sloyan BM, Hobday AJ, Coleman R, Richardson AJ (2009) Variability of biological production in low wind-forced regional upwelling systems: a case study off southeastern Australia. Limnol Oceanogr 54:1548–1558

    Article  Google Scholar 

  • Numata M, Davis LS, Renner M (2000) Prolonged foraging trips and egg desertion in little penguins (Eudyptula minor). N Z J Zool 27:277–289. doi:10.1080/03014223.2000.9518236

    Article  Google Scholar 

  • Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Stairs GR, Mitchell RD (eds) Analysis of ecological systems. Ohio State University Press, Columbus, pp 155–177

    Google Scholar 

  • Pelletier L, Kato A, Chiaradia A, Ropert-Coudert Y (2012) Can thermoclines be a cue to prey distribution for marine top predators? A case study with little penguins. PLoS One 7:e31768. doi:10.1371/journal.pone.0031768

    Article  CAS  Google Scholar 

  • Péron C, Authier M, Barbraud C, Delord K, Besson D, Weimerskirch H (2010) Interdecadal changes in at-sea distribution and abundance of subantarctic seabirds along a latitudinal gradient in the Southern Indian Ocean. Glob Change Biol 16:1895–1909. doi:10.1111/j.1365-2486.2010.02169.x

    Article  Google Scholar 

  • Perriman L, Houston D, Steen H, Johannesen E (2000) Climate fluctuation effects on breeding of blue penguins (Eudyptula minor). N Z J Zool 27:261–267. doi:10.1080/03014223.2000.9518234

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team (2013) nlme: linear and nonlinear mixed effects models. R package version 3.1-108

  • Poloczanska E, Babcock R, Butler A, Hobday A, Hoegh-Guldberg O, Kunz T, Matear R, Milton D, Okey T, Richardson A (2007) Climate change and Australian marine life. Oceanogr Mar Biol 45:407–478

    Google Scholar 

  • R Developement Core Team (2013) R: a language and environment for statistical computing. ISBN 3-900051-07-0. R foundation for statistical computing. Vienna, Austria. http://www.R-project.org

  • Ramírez F, Afán I, Hobson KA, Bertellotti M, Blanco G, Forero MG (2014) Natural and anthropogenic factors affecting the feeding ecology of a top marine predator, the Magellanic penguin. Ecosphere 5:38. doi:10.1890/es13-00297.1

    Article  Google Scholar 

  • Reilly PN, Cullen JM (1981) The little penguin Eudyptula minor in Victoria II: breeding. Emu 81:1–19. doi:10.1071/MU9810001

    Article  Google Scholar 

  • Rey AR, Pütz K, Scioscia G, Lüthi B, Schiavini A (2012) Sexual differences in the foraging behaviour of Magellanic Penguins related to stage of breeding. Emu 112:90–96

    Article  Google Scholar 

  • Ridgway KR (2007) Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys Res Lett 34:1–5. doi:10.1029/2007gl030393

    Google Scholar 

  • Ridgway K, Hill K (2009) The East Australian Current a marine climate change impacts and adaptation report card for Australia 2009. In: E.S. Poloczanska, A.J. Hobday and A.J. Richardson (eds), NCCARF Publication 05/09

  • Rishworth GM, Tremblay Y, Green DB, Connan M, Pistorius PA (2014) Drivers of time-activity budget variability during breeding in a Pelagic Seabird. PLoS One 9:e116544

    Article  Google Scholar 

  • Ropert-Coudert Y, Kato A, Wilson RP, Cannell B (2006) Foraging strategies and prey encounter rate of free-ranging little Penguins. Mar Biol 149:139–148. doi:10.1007/s00227-005-0188-x

    Article  Google Scholar 

  • Ropert-Coudert Y, Knott N, Chiaradia A, Kato A (2007) How do different data logger sizes and attachment positions affect the diving behaviour of little penguins? Deep Sea Res Part II 54:415–423. doi:10.1016/j.dsr2.2006.11.018

    Article  Google Scholar 

  • Ropert-Coudert Y, Kato A, Chiaradia A (2009) Impact of small-scale environmental perturbations on local marine food resources: a case study of a predator, the little penguin. Proc R Soc B Biol Sci 276:4105

    Article  Google Scholar 

  • Sandery PA, Kämpf J (2005) Winter-spring flushing of Bass Strait, south-eastern Australia: a numerical modelling study. Estuar Coast Shelf Sci 63:23–31. doi:10.1016/j.ecss.2004.10.009

    Article  Google Scholar 

  • Schaper SV, Dawson A, Sharp PJ, Gienapp P, Caro SP, Visser ME (2012) Increasing temperature, not mean temperature, is a cue for avian timing of reproduction. Am Nat 179:E55–E69. doi:10.1086/663675

    Article  Google Scholar 

  • Stahel C, Gales R, Burrell J (1987) Little penguin: Fairy penguins in Australia. New South Wales University Press, Kensington

    Google Scholar 

  • Stearns SC (1992) The evolution of life histories. University Press, Oxford

    Google Scholar 

  • Sumner MD (2012) trip: Spatial analysis of animal track data. R package version 1.1-12. http://CRAN.R-project.org/package=trip

  • Takahashi A, Watanuki Y, Sato K, Kato A, Arai N, Nishikawa J, Naito Y (2003) Parental foraging effort and offspring growth in Adélie Penguins: does working hard improve reproductive success? Funct Ecol 17:590–597

    Article  Google Scholar 

  • Tremblay Y, Cherel Y (2000) Benthic and pelagic dives: a new foraging behaviour in rockhopper penguins. MEPS 204:257–267

    Article  Google Scholar 

  • Wanless S, Harris M, Redman P, Speakman J (2005) Low energy values of fish as a probable cause of a major seabird breeding failure in the North Sea. MEPS 294:8

    Article  Google Scholar 

  • Ward TM, McLeay LJ, Dimmlich WF, Rogers PJ, McClatchie SAM, Matthews R, Kampf J, Van Ruth PD (2006) Pelagic ecology of a northern boundary current system: effects of upwelling on the production and distribution of sardine (Sardinops sagax), anchovy (Engraulis australis) and southern bluefin tuna (Thunnus maccoyii) in the Great Australian Bight. Fish Oceanogr 15:191–207. doi:10.1111/j.1365-2419.2006.00353.x

    Article  Google Scholar 

  • Watanuki Y, Kato A, Mori Y, Naito Y (1993) Diving performance of Adélie penguins in relation to food availability in fast sea-ice areas: comparison between years. J Anim Ecol 62:634–646. doi:10.2307/5384

    Article  Google Scholar 

  • Waugh SM, Weimerskirch H (2003) Environmental heterogeneity and the evolution of foraging behaviour in long ranging greater albatrosses. Oikos 103:374–384. doi:10.1034/j.1600-0706.2003.12178.x

    Article  Google Scholar 

  • Weavers B (1992) Seasonal foraging ranges and travels at sea of Little Penguins Eudyptula minor, determined by radiotracking. Emu 91:302–317

    Article  Google Scholar 

  • Weimerskirch H (2007) Are seabirds foraging for unpredictable resources? Deep Sea Res Part II 54:211–223. doi:10.1016/j.dsr2.2006.11.013

    Article  Google Scholar 

  • Weimerskirch H, Mougey T, Hindermeyer X (1997) Foraging and provisioning strategies of black-browed albatrosses in relation to the requirements of the chick: natural variation and experimental study. Behav Ecol 8:635–643

    Article  Google Scholar 

  • Wendeln H, Becker PH (1999) Effects of parental quality and effort on the reproduction of common terns. J Anim Ecol 68:205–214

    Article  Google Scholar 

  • Williams TD (1995) The penguins: Spheniscidae. Oxford University Press, Oxford

    Google Scholar 

  • Wilson RP, Wilson M (1990) Foraging ecology of breeding Spheniscus penguins. In: Davis L, Darby JT (eds) Penguin biology. Academic Press, London, pp 181–206

    Google Scholar 

  • Wood A, Naef-Daenzer B, Prince P, Croxall J (2000) Quantifying habitat use in satellite-tracked pelagic seabirds: application of kernel estimation to albatross locations. J Avian Biol 31:278–286. doi:10.1034/j.1600-048X.2000.310302.x

    Article  Google Scholar 

  • Ydenberg R, Clark CW (1989) Aerobiosis and anaerobiosis during diving by western grebes: an optimal foraging approach. J Theor Biol 139:437–447. doi:10.1016/S0022-5193(89)80064-5

    Article  Google Scholar 

  • Ydenberg R, Welham C, Schmid-Hempel R, Schmid-Hempel P, Beauchamp G (1994) Time and energy constraints and the relationships between currencies in foraging theory. Behav Ecol 5:28–34

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

The study was conducted under Deakin University Animal Ethics Committee approval and Department of Sustainability and Environment (Victoria) Permit No. 10005531. We are grateful for the assistance of the many fieldworkers (E.C.M. Camprasse in particular) involved in the study and warmly thank Parks Victoria for the logistical support provided at both Port Campbell National Park and Gabo Island Lighthouse Reserve (especially Leo Op Den Brouw and Geoff Sharpe). This project was supported financially by research grants from the Holsworth Wildlife Research Endowment, Birds Australia and M.A. Ingram Trust. We acknowledge A.M. Dujon for his valuable comments and suggestions on data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maud Berlincourt.

Additional information

Communicated by S. Garthe.

Reviewed by A. Raya Rey and undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berlincourt, M., Arnould, J.P.Y. Influence of environmental conditions on foraging behaviour and its consequences on reproductive performance in little penguins. Mar Biol 162, 1485–1501 (2015). https://doi.org/10.1007/s00227-015-2685-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2685-x

Keywords

Navigation