Skip to main content

Advertisement

Log in

Ocean acidification elicits different energetic responses in an Arctic and a boreal population of the copepod Pseudocalanus acuspes

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Anthropogenic emissions cause the global CO2 partial pressure (pCO2) to increase, and atmospheric models predict a pCO2 of ~1,000 µatm by the year 2100. About one-third of emitted CO2 is absorbed by the world’s oceans, causing a decrease in ocean pH. Experiments show varying effects of this so-called ocean acidification (OA) on marine animals, and it has proven exceedingly difficult to establish general rules for OA effects among species. In the present study, we found different energetic OA effects in populations from Svalbard and Skagerrak of the same calanoid copepod species, Pseudocalanus acuspes. In the Svalbard population, ingestion rates showed an inverted U-shaped hormesis-like response with higher rates at pH 7.80 than at pH 7.95 and pH 7.61 at medium and high prey concentrations. On the other hand, ingestion rates were lower at pH 7.70 and pH 7.47 than at pH 7.95 only at high prey concentrations in the Skagerrak population. Secondly, we found significant interactions between the effects of pH and prey concentration on both ingestion rate and respiration rate in the Skagerrak population, which indicates that OA may influence the way ingestion and respiration relate to prey concentration. In conclusion, the results suggest that OA effects may be far from linearly related to pH in copepods, and moreover, the effects may vary within species between populations from different regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarbakke ONS, Bucklin A, Halsband C, Norrbin F (2011) Discovery of Pseudocalanus moultoni (Frost, 1989) in Northeast Atlantic waters based on mitochondrial COI sequence variation. J Plank Res 33:1487–1495

    Article  CAS  Google Scholar 

  • Båmstedt U (1986) Chemical composition and energy content. In: Corner EDS, O’Hara SCM (eds) The biological chemistry of marine copepods. Clarendon Press, Oxford

    Google Scholar 

  • Beaugrand G, Brander KM, Lindley JA, Souissi S, Reid PC (2003) Plankton effect on cod recruitment in the North Sea. Nature 426:661–664

    Article  CAS  Google Scholar 

  • Bell G, Collins S (2008) Adaptation, extinction and global change. Evol Appl 1:3–16

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res Oceans 110:C09S04

    Article  Google Scholar 

  • Calliari D, Andersen CM, Thor P, Gorokhova E, Tiselius P (2006) Salinity modulates the energy balance and reproductive success of co-occurring copepods Acartia tonsa and A. clausi in different ways. Mar Ecol Prog Ser 312:177–188

    Article  Google Scholar 

  • Calosi P, Rastrick SPS, Lombardi C, de Guzman HJ, Davidson L, Jahnke M, Giangrande A, Hardege JD, Schulze A, Spicer JI, Gambi MC (2013) Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philos Trans R Soc B Biol Sci 368:20120444

    Article  Google Scholar 

  • Cao L, Caldeira K, Jain AK (2007) Effects of carbon dioxide and climate change on ocean acidification and carbonate mineral saturation. Geophys Res Lett 34:L05607

    Google Scholar 

  • Castonguay M, Plourde S, Robert D, Runge JA, Fortier L (2008) Copepod production drives recruitment in a marine fish. Can J Fish Aquat Sci 65:1528–1531

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Cripps G, Lindeque P, Flynn KJ (2014) Have we been underestimating the effects of ocean acidification in zooplankton? Glob Change Biol 20:3377–3385

    Article  Google Scholar 

  • Dam HG, Lopes RM (2003) Omnivory in the calanoid copepod Temora longicornis: feeding, egg production and egg hatching rates. J Exp Mar Biol Ecol 292:119–137

    Article  Google Scholar 

  • Dupont S, Pörtner HO (2013) Get ready for ocean acidification. Nature 498:429

    Article  CAS  Google Scholar 

  • Fitzer SC, Caldwell GS, Close AJ, Clare AS, Upstill-Goddard RC, Bentley MG (2012) Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation. J Exp Mar Biol Ecol 418–419:30–36

    Article  Google Scholar 

  • Freese D, Kreibich T, Niehoff B (2012) Characteristics of digestive enzymes of calanoid copepod species from different latitudes in relation to temperature, pH and food. Comp Biochem Physiol B Biochem Mol Biol 162:66–72

    Article  CAS  Google Scholar 

  • Frost BW (1972) Effect of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod Calanus finmarchicus. Limnol Oceanogr 17:805–815  

    Article  Google Scholar 

  • Grabbert S, Renz J, Hirche H-J, Bucklin A (2010) Species-specific PCR discrimination of species of the calanoid copepod Pseudocalanus, P. acuspes and P. elongatus, in the Baltic and North Seas. Hydrobiologia 652:289–297

    Article  Google Scholar 

  • Gudmundsdottir R (2008) Pseudocalanusin Svalbard waters: identification and distribution of two sibling species. Department of Aquatic Biosciences, University of Tromsø, Norwegian College of Fisheries Science, pp 1–153

    Google Scholar 

  • Hansen B, Tande KS, Berggreen U (1990) On the trophic fate of Phaeocystis pouchetii (Hariot). III. Functional responses in grazing demonstrated in juvenile stages of Calanus finmarchicus (Copepoda) fed diatoms and Phaeocystis. J Plank Res 12:1173–1187

    Article  Google Scholar 

  • IPCC (2013) IPCC fifth assessment report: climate change 2013. The Physical Science Basis, Cambridge

    Google Scholar 

  • Jobling M (1983) Towards an explantation of specific dynamic action. J Fish Biol 23:549–556

    Article  Google Scholar 

  • Kiørboe T, Møhlenberg F, Hamburger K (1985) Bioenergetics of the planktonic copepod Acartia tonsa: relation between feeding, egg production and respiration, and composition of specific dynamic action. Mar Ecol Prog Ser 26:85–97

    Article  Google Scholar 

  • Klein Breteler WCM, Fransz HG, Gonzalez SR (1982) Growth and development of four calanoid copepod species under experimental and natural conditions. Neth J Sea Res 16:195–207

    Article  Google Scholar 

  • Koehn RK, Bayne BL (1989) Towards a physiological and genetical understanding of the energetics of the stress response. Biol J Linn Soc 37:157–171

    Article  Google Scholar 

  • Koski M, Klein Breteler WCM (2003) Influence of diet on copepod survival in the laboratory. Mar Ecol Prog Ser 264:73–82

    Article  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434

    Article  Google Scholar 

  • Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284

    Article  CAS  Google Scholar 

  • Kurihara H, Ishimatsu A (2008) Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Mar Pollut Bull 56:1086–1090

    Article  CAS  Google Scholar 

  • Last JM (1980) The food of twenty species of fish larvae in the west-central North Sea. Ministry of Agriculture, Fisheries and Food, Lowestoft

    Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge

    Book  Google Scholar 

  • Lewis CN, Brown KA, Edwards LA, Cooper G, Findlay HS (2013) Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice. Proc Natl Acad Sci 110:E4960–E4967

    Article  CAS  Google Scholar 

  • Li W, Gao K (2012) A marine secondary producer respires and feeds more in a high CO2 ocean. Mar Pollut Bull 64:699–703

    Article  CAS  Google Scholar 

  • Lischka S, Hagen W (2005) Life histories of the copepods Pseudocalanus minutus, P. acuspes (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Pol Biol 28:910–921

    Article  Google Scholar 

  • Mauchline J (1998) The biology of calanoid copepods. Academic Press, San Diego

    Google Scholar 

  • Mayor DJ, Everett NR, Cook KB (2012) End of century ocean warming and acidification effects on reproductive success in a temperate marine copepod. J Plank Res 34:258–262

    Article  CAS  Google Scholar 

  • Mayzaud P, Tirelli V, Bernard JM, Roche-Mayzaud O (1998) The influence of food quality on the nutritional acclimation of the copepod Acartia clausi. J Mar Syst 15:483–493

    Article  Google Scholar 

  • Mayzaud P, Boutoute M, Gasparini SP, Mousseau L, Lefevre D (2005) Respiration in marine zooplankton-the other side of the coin: CO2 production. Limnol Oceanogr 50:291–298

    Article  CAS  Google Scholar 

  • McConville K, Halsband C, Fileman ES, Somerfield PJ, Findlay HS, Spicer JI (2013) Effects of elevated CO2 on the reproduction of two calanoid copepods. Mar Pollut Bull 73:428–434

    Article  CAS  Google Scholar 

  • Montagnes DJS, Berges JA, Harrison PJ, Taylor FJM (1994) Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol Oceanogr 39:1044–1060

    Article  CAS  Google Scholar 

  • Ohman MD (1986) Predator-limited population-growth of the copepod Pseudocalanus sp. J Plank Res 8:673–713

    Article  Google Scholar 

  • Peijnenburg KTCA, Goetze E (2013) High evolutionary potential of marine zooplankton. Ecol Evol 3:2765–2781

    Article  Google Scholar 

  • Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Oceanogr 60:705–718

    Article  Google Scholar 

  • Riebesell U, Fabry VJ, Hansson L, Gattuso JP (2010) Guide to best practice for research for ocean acidification and data reporting. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL et al (2004) The ocean sink for CO2. Science 305:367–371

    Article  CAS  Google Scholar 

  • Sanford E, Kelly MW (2010) Local adaptation in marine invertebrates. Annu Rev Mar Sci 3:509–535

    Article  Google Scholar 

  • Stumpp M, Wren J, Melzner F, Thorndyke MC, Dupont ST (2011) CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comp Biochem Physiol A Mol Integr Physiol 160:331–340

    Article  CAS  Google Scholar 

  • Stumpp M, Hu M, Casties I, Saborowski R, Bleich M, Melzner F, Dupont S (2013) Digestion in sea urchin larvae impaired under ocean acidification. Nat Clim Change 3:1044–1049

    Article  CAS  Google Scholar 

  • Thor P (2000) Relationship between specific dynamic action and protein deposition in calanoid copepods. J Exp Mar Biol Ecol 24:171–182

    Article  Google Scholar 

  • Thor P (2002) Specific dynamic action and carbon incorporation in Calanus finmarchicus copepodites and females. J Exp Mar Biol Ecol 272:159–169

    Article  CAS  Google Scholar 

  • Thor P, Wendt I (2010) Functional response of carbon absorption efficiency in the copepod Acartia tonsa Dana. Limnol Oceanogr 55:1779–1789

    Article  Google Scholar 

  • Thor P, Cervetto G, Besiktepe S, Ribera-Maycas E, Tang KW, Dam HG (2002) Influence of two different green algal diets on specific dynamic action and incorporation of carbon into biochemical fractions in the copepod Acartia tonsa. J Plank Res 24:293–300

    Article  Google Scholar 

  • Thor P, Nielsen TG, Tiselius P, Juul-Pedersen T, Michel C, Møller EF, Dahl K, Selander E, Gooding S (2005) Post spring bloom community structure of pelagic copepods in the Disko Bay, Western Greenland. J Plank Res 27:341–356

    Article  CAS  Google Scholar 

  • Thor P, Koski M, Tang KW, Jónasdóttir SH (2007) Supplemental effects of diet mixing on absorption of ingested organic carbon in the marine copepod Acartia tonsa. Mar Ecol Prog Ser 331:131–138

    Article  CAS  Google Scholar 

  • Thor P, Nielsen TG, Tiselius P (2008) Mortality rates of epipelagic copepods in the post-spring bloom period in the Disko Bay, western Greenland. Mar Ecol Prog Ser 359:151–160

    Article  Google Scholar 

  • Vargas CA, de la Hoz M, Aguilera V, Martin VS, Manriquez PH, Navarro JM, Torres R, Lardies MA, Lagos NA (2013) CO2-driven ocean acidification reduces larval feeding efficiency and changes food selectivity in the mollusk Concholepas concholepas. J Plank Res 35:1059–1068

    Article  CAS  Google Scholar 

  • Wood HL, Spicer JI, Widdicombe S (2008) Ocean acidification may increase calcification rates, but at a cost. Proc R Soc B Biol Sci 275:1767–1773

    Article  Google Scholar 

  • Zervoudaki S, Frangoulis C, Giannoudi E, Krasakopoulou E (2014) Effects of low pH and raised temperature on egg production, hatching and metabolic rates of a Mediterranean copepod species (Acartia clausi) under oligotrophic conditions. Mediterr Mar Sci 15:74–83

    Google Scholar 

  • Zhang D, Li S, Wang G, Guo D, Xing K, Zhang S (2012) Biochemical responses of the copepod Centropages tenuiremis to CO2-driven acidified seawater. Water Sci Technol 65:30–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff at the Sven Lovén Centre for Marine Science at Kristineberg, Sweden for their skillful help. We also thank C. Vargas, H. Browman, and H. Dam for their comments that significantly improved the manuscript. The study was funded by the Norwegian Ministry of Environment through the Fram Centre Flagship “Ocean Acidification and Ecosystem Effects in Northern Waters.” Experiments were financially supported by the European Community through ASSEMBLE Grant Agreement No. 227799.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Thor.

Additional information

Communicated by H. Pörtner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thor, P., Oliva, E.O. Ocean acidification elicits different energetic responses in an Arctic and a boreal population of the copepod Pseudocalanus acuspes . Mar Biol 162, 799–807 (2015). https://doi.org/10.1007/s00227-015-2625-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2625-9

Keywords

Navigation