Skip to main content
Log in

Large Isoperimetric Regions in Asymptotically Hyperbolic Manifolds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show the existence of isoperimetric regions of sufficiently large volumes in general asymptotically hyperbolic three manifolds. Furthermore, we show that large coordinate spheres are uniquely isoperimetric in manifolds that are Schwarzschild–anti-deSitter at infinity. These results have important repercussions for our understanding of spacelike hypersurfaces in Lorentzian space-times which are asymptotic to null infinity. In fact, as an application of our results, we verify the asymptotically hyperbolic Penrose inequality in the special case of the existence of connected isoperimetric regions of all volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson L., Cai M., Galloway G.J.: Rigidity and positivity of mass for asymptotically hyperbolic manifolds. Ann. Henri Poincaré 9(1), 1–33 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ambrozio L.C.: On perturbations of the Schwarzschild anti-de Sitter spaces of positive mass. Commun. Math. Phys. 337(2), 767–783 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bray, H.L., Chruściel, P.T.: The Penrose inequality. In: The Einstein equations and the large scale behavior of gravitational fields, pp. 39–70. Birkhäuser, Basel (2004)

  4. Brendle S., Chodosh O.: A volume comparison theorem for asymptotically hyperbolic manifolds. Commun. Math. Phys. 332(2), 839–846 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Brendle S., Eichmair M.: Isoperimetric and Weingarten surfaces in the Schwarzschild manifold. J. Differ. Geom. 94, 387–407 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Brendle S., Eichmair M.: Large outlying stable constant mean curvature spheres in initial data sets. Invent. Math. 197(3), 663–682 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Brendle, S., Hung, P.-K., Wang, M.-T.: A Minkowski-type inequality for hypersurfaces in the anti-deSitter–Schwarzschild manifold. Commun. Pure Appl. Math. (2012). arXiv:1209.0669 (to appear)

  8. Bavard C., Pansu P.: Sur le volume minimal de R 2. Ann. Sci. École Norm. Sup. (4) 19(4), 479–490 (1986)

    MathSciNet  MATH  Google Scholar 

  9. Bray, H.L.: The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature. Ph.D. thesis, Stanford University (1997). arXiv:0902.3241

  10. Bray H.L.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59(2), 177–267 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Brendle S.: Constant mean curvature surfaces in warped product manifolds. Publ. Math. Inst. Hautes Études Sci. 117, 247–269 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brendle S., Wang M.-T.: A Gibbons–Penrose inequality for surfaces in Schwarzschild spacetime. Commun. Math. Phys. 330(1), 33–43 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Carlotto, A.: Rigidity of stable minimal hypersurfaces in asymptotically flat spaces (2014). arXiv:1403.6459 (preprint)

  14. Carlotto, A., Chodosh, O., Eichmair, M.: Effective versions of the positive mass theorem (2015). arXiv:1503.05910 (preprint)

  15. Chruściel P.T., Delay E.: Gluing constructions for asymptotically hyperbolic manifolds with constant scalar curvature. Commun. Anal. Geom. 17(2), 343–381 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Corvino J., Gerek A., Greenberg M., Krummel B.: On isoperimetric surfaces in general relativity. Pac. J. Math. 231(1), 63–84 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Christodoulou, D., Yau, S.-T.: Some remarks on the quasi-local mass. Mathematics and general relativity (Santa Cruz, CA, 1986). In: Contemporary Mathematics, vol. 71, pp. 9–14. American Mathematical Society, Providence (1988)

  18. Dahl M., Gicquaud R., Sakovich A.: Penrose type inequalities for asymptotically hyperbolic graphs. Ann. Henri Poincaré 14(5), 1135–1168 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. de Lima, L.L., Girão, F.: An Alexandrov–Fenchel-type inequality in hyperbolic space with an application to a Penrose inequality. Ann. Henri Poincaré (2012). arXiv:1209.0438 (to appear)

  20. Duzaar F., Steffen K.: Area minimizing hypersurfaces with prescribed volume and boundary. Math. Z. 209(4), 581–618 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. In: Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

  22. Eichmair M., Metzger J.: On large volume preserving stable CMC surfaces in initial data sets. J. Differ. Geom. 91(1), 81–102 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Eichmair M., Metzger J.: Large isoperimetric surfaces in initial data sets. J. Differ. Geom. 94(1), 159–186 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Eichmair M., Metzger J.: Unique isoperimetric foliations of asymptotically flat manifolds in all dimensions. Invent. Math. 194(3), 591–630 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library, Wiley, New York (1994) (reprint of the 1978 original)

  26. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin (2001) (reprint of the 1998 edition)

  27. Huisken G., Ilmanen T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59(3), 353–437 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Hu, X., Ji, D., Shi, Y.: Volume comparison of conformally compact manifolds with scalar curvature \({{R}\geq -n(n-1)}\). Ann. Henri Poincaré (2013). arXiv:1309.5430 (to appear)

  29. Huang, L.-H.: On the center of mass of isolated systems with general asymptotics. Class. Quantum Gravity 26(1), 015012–015025 (2009)

  30. Huang L.-H.: Foliations by stable spheres with constant mean curvature for isolated systems with general asymptotics. Commun. Math. Phys. 300(2), 331–373 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Huisken, G.: An isoperimetric concept for mass and quasilocal mass. Oberwolfach Rep. (2), 87–88 (2006)

  32. Huisken, G.: An isoperimetric concept for the mass in general relativity. http://video.ias.edu/node/234 (2009)

  33. Huisken G., Yau S.-T.: Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature. Invent. Math. 124(1–3), 281–311 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Lee Dan, A., Neves, A.: The Penrose inequality for asymptotically locally hyperbolic spaces with nonpositive mass (2013). arXiv:1310.3002 (preprint)

  35. Ma S.: Uniqueness of the foliation of constant mean curvature spheres in asymptotically flat 3-manifolds. Pac. J. Math. 252(1), 145–179 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ma, S.: A new result on the uniqueness of the CMC foliation in asymptotically flat manifold (2012). arXiv:1207.0281(preprint)

  37. Mars, M.: Present status of the Penrose inequality. Class. Quantum Gravity 26(19), 193001–193059 (2009)

  38. Mondino, A., Nardulli, S.: Existence of isoperimetric regions in non-compact Riemannian manifolds under Ricci or scalar curvature conditions. Commun. Anal. Geom. (2012). arXiv:1210.0567 (to appear)

  39. Mazzeo R., Pacard F.: Constant curvature foliations in asymptotically hyperbolic spaces. Rev. Mat. Iberoam. 27(1), 303–333 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nardulli S.: Generalized existence of isoperimetric regions in non-compact Riemannian manifolds and applications to the isoperimetric profile. Asian J. Math. 18(1), 1–28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Neves A.: Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds. J. Differ. Geom. 84(1), 191–229 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Niculescu, C.P., Persson, L.-E.: Convex functions and their applications. In: CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. A Contemporary Approach, vol. 23. Springer, New York (2006)

  43. Neves A., Tian G.: Existence and uniqueness of constant mean curvature foliation of asymptotically hyperbolic 3-manifolds. Geom. Funct. Anal. 19(3), 910–942 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Neves A., Tian G.: Existence and uniqueness of constant mean curvature foliation of asymptotically hyperbolic 3-manifolds. II. J. Reine Angew. Math. 641, 69–93 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Osserman R.: The isoperimetric inequality. Bull. Am. Math. Soc. 84(6), 1182–1238 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  46. Penrose R.: Naked singularities. Ann. N. Y. Acad. Sci. 224(1), 125–134 (1973)

    Article  ADS  MATH  Google Scholar 

  47. Qing J., Tian G.: On the uniqueness of the foliation of spheres of constant mean curvature in asymptotically flat 3-manifolds. J. Am. Math. Soc. 20(4), 1091–1110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rigger R.: The foliation of asymptotically hyperbolic manifolds by surfaces of constant mean curvature (including the evolution equations and estimates). Manuscr. Math. 113(4), 403–421 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ritoré M.: Constant geodesic curvature curves and isoperimetric domains in rotationally symmetric surfaces. Commun. Anal. Geom. 9(5), 1093–1138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ritoré, M.: Optimal isoperimetric inequalities for three-dimensional Cartan–Hadamard manifolds. Global theory of minimal surfaces. In: Clay Math. Proceedings, vol.2, pp. 395–404. American Mathematical Society, Providence (2005)

  51. Ros, A.: The isoperimetric problem. Global theory of minimal surfaces. In: Clay Math. Proceedings, vol. 2, pp. 175–209. American Mathematical Society, Providence (2005)

  52. Ritoré M., Rosales C.: Existence and characterization of regions minimizing perimeter under a volume constraint inside Euclidean cones (electronic). Trans. Am. Math. Soc. 356(11), 4601–4622 (2004)

    Article  MATH  Google Scholar 

  53. Shi, Y.: Isoperimetric inequality on asymptotically flat manifolds with nonnegative scalar curvature (2015). arXiv:1503.02350 (preprint)

  54. Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, vol. 3. Australian National University, Centre for Mathematical Analysis, Canberra (1983)

  55. Schoen R., Yau S.-T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65(1), 45–76 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Wang X.: The mass of asymptotically hyperbolic manifolds. J. Differ. Geom. 57(2), 273–299 (2001)

    MathSciNet  MATH  Google Scholar 

  57. White, B.: Lectures on minimal surface theory (2013). arXiv:1308.3325

  58. Yang K.: Meromorphic functions, divisors, and projective curves: an introductory survey. J. Korean Math. Soc. 31(4), 569–608 (1994)

    MathSciNet  MATH  Google Scholar 

  59. Ye, R.: Foliation by constant mean curvature spheres on asymptotically flat manifolds. In: Geometric Analysis and the Calculus of Variations, pp. 369–383. International Press, Cambridge (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otis Chodosh.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chodosh, O. Large Isoperimetric Regions in Asymptotically Hyperbolic Manifolds. Commun. Math. Phys. 343, 393–443 (2016). https://doi.org/10.1007/s00220-015-2457-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2457-y

Keywords

Navigation