Skip to main content
Log in

Birkhoff’s Polytope and Unistochastic Matrices, N = 3 and N = 4

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The set of bistochastic or doubly stochastic N×N matrices is a convex set called Birkhoff’s polytope, which we describe in some detail. Our problem is to characterize the set of unistochastic matrices as a subset of Birkhoff’s polytope. For N=3 we present fairly complete results. For N=4 partial results are obtained. An interesting difference between the two cases is that there is a ball of unistochastic matrices around the van der Waerden matrix for N=3, while this is not the case for N=4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and its Applications. New York: Academic Press 1979

  2. Landé, A.: From Dualism to Unity in Quantum Physics. Cambridge: Cambridge U. P. 1960

  3. Rovelli, C.: Relational Quantum Mechanics. Int. J. of Theor. Phys. 35, 1637 (1996)

    Google Scholar 

  4. Khrennikov, A.: Linear representations of probabilistic transformations induced by context transition. J. Phys. A34, 9965 (2001)

    Google Scholar 

  5. Tanner, G.: Unitary-stochastic matrix ensembles, and spectral statistics. J. Phys. A34, 8485 (2001)

    Google Scholar 

  6. Pakoński, P., Życzkowski, K., Kuś, M.: Classical 1D maps, quantum graphs and ensembles of unitary matrices. J. Phys. A34, 9303 (2001)

    Google Scholar 

  7. Pakoński, P., Tanner, G., Życzkowski, K.: Families of Line-Graphs and Their Quantization. J. Stat. Phys. 111, 1331 (2003)

    Article  Google Scholar 

  8. Życzkowski, K., Kuś, M., Słomczyński, W., Sommers, H.-J.: Random unistochastic matrices. J. Phys. A36, 3425 (2003)

  9. Jarlskog, C., Stora, R.: Unitarity polygons and CP violation areas and phases in the standard electroweak model. Phys. Lett. B208, 268 (1988)

    Google Scholar 

  10. Auberson, G., Martin, A., Mennessier, G.: On the Reconstruction of a Unitary Matrix from its Moduli. Commun. Math. Phys. 140, 523 (1991)

    Google Scholar 

  11. Mennessier, G., Nyuts, J.: Some unitarity bounds for finite matrices. J. Math. Phys. 15, 1525 (1974)

    Article  Google Scholar 

  12. Sylvester, J.J.: Thoughts on inverse orthogonal matrices, simultaneous sign-successions, and tessellated pavements in two or more colours, with applications to Newton’s rule, ornamental tile-work, and the theory of numbers. Phil. Mag. 34, 461 (1867)

    Google Scholar 

  13. Petrescu, M.: Existence of continuous families of complex Hadamard matrices of certain prime dimensions and related results. UCLA thesis, Los Angeles 1997

  14. Diţa, P.: Some results on the parametrization of complex Hadamard matrices. J. Phys. A37, 5355 (2004)

    Google Scholar 

  15. Zeilinger, A., Żukowski, M., Horne, M.A., Bernstein, H.J., Greenberger, D.M.: Einstein-Podolsky-Rosen correlations in higher dimensions. In: J. Anandan, J. L. Safko, eds. Fundamental Aspects of Quantum Theory, Singapore: World Scientific, 1993

  16. Törmä, P., Stenholm, S., Jex, I.: Hamiltonian theory of symmetric optical network transforms. Phys. Rev. A52, 4853 (1995)

  17. Werner, R.F.: All Teleportation and Dense Coding Schemes. J. Phys. A34, 7081 (2001)

    Google Scholar 

  18. Birkhoff, G.: Tres observaciones sobre el algebra lineal. Univ. Nac. Tucumán Rev. A5, 147 (1946)

  19. Brualdi, R.A., Gibson, P.M.: Convex Polyhedra of Doubly Stochastic Matrices. I. Applications of the Permanent Function. J. Comb. Theory A22, 194 (1977)

    Google Scholar 

  20. Słomczyński, W.: Subadditivity of Entropy for Stochastic Matrices. Open Sys. Inf. Dyn. 9, 201 (2002)

    Article  Google Scholar 

  21. Beck, M., Pixton, D.: The volume of the 10th Birkhoff polytope. arXiv: math.CO/0305322

  22. Au-Yeung, Y.-H., Poon, Y.-T.: 3× 3 Orthostochastic Matrices and the Convexity of Generalized Numerical Ranges. Lin. Alg. Appl. 27, 69 (1979)

    Article  Google Scholar 

  23. Nakazato, H.: Sets of 3× 3 Orthostochastic Matrices. Nikonkai Math. J. 7, 83 (1996)

    Google Scholar 

  24. Gadiyar, H.G., Maini, K.M.S., Padma, R., Sharatchandra, H.S.: Entropy and Hadamard matrices. J. Phys. A36, L109 (2003)

  25. Jones, K.R.W.: Entropy of random quantum states. J. Phys. A23, L1247 (1990)

  26. Au-Yeung, Y.-H., Cheng, C.-M.: Permutation Matrices Whose Convex Combinations Are Orthostochastic. Lin. Alg. Appl. 150, 243 (1991)

    Article  Google Scholar 

  27. Hadamard, M.J.: Résolutions d’une question relative aux déterminants. Bull. Sci. Math. 17, 240 (1893)

    Google Scholar 

  28. Haagerup, U.: Orthogonal maximal Abelian *-subalgebras of the n× n matrices and cyclic n-roots. In: Operator Algebras and Quantum Field Theory, Rome (1996), Cambridge, MA: Internat. Press, 1997

  29. Tadej, W.: Unpublished

  30. Mehta, M.L.: Random Matrices. II ed., New York: Academic, 1991

  31. Poźniak, M., Życzkowski, K., Kuś, M.: Composed ensembles of random unitary matrices. J. Phys. A31, 1059 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingemar Bengtsson.

Additional information

Communicated by M.B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bengtsson, I., Ericsson, Å., Kuś, M. et al. Birkhoff’s Polytope and Unistochastic Matrices, N = 3 and N = 4. Commun. Math. Phys. 259, 307–324 (2005). https://doi.org/10.1007/s00220-005-1392-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1392-8

Keywords

Navigation