Skip to main content
Log in

A biosensor based on electroactive dipyrromethene-Cu(II) layer deposited onto gold electrodes for the detection of antibodies against avian influenza virus type H5N1 in hen sera

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper describes the development of a biosensor for the detection of anti-hemagglutinin antibodies against the influenza virus hemagglutinin. The steps of biosensor fabrications are as follows: (i) creation of a mixed layer containing the thiol derivative of dipyrromethene and 4-mercapto-1-butanol, (ii) complexation of Cu(II) ions, (iii) oriented immobilization of the recombinant histidine-tagged hemagglutinin, and (iv) filling free spaces with bovine serum albumin. The interactions between recombinants hemagglutinin from the highly pathogenic avian influenza virus type H5N1 and anti-hemagglutinin H5 monoclonal antibodies were explored with Osteryoung square-wave voltammetry. The biosensor displayed a good detection limit of 2.4 pg/mL, quantification limit of 7.2 pg/mL, and dynamic range from 4.0 to 100.0 pg/mL in buffer. In addition, this analytical device was applied for the detection of antibodies in hen sera from individuals vaccinated and non-vaccinated against the avian influenza virus type H5N1. The limit of detection for the assay was the dilution of sera 1: 7 × 106, which is about 200 times better than the enzyme-linked immunosorbent assay.

Scheme of immunosensor based on dipyrromethene-Cu(II)-Histidine-tagged hemagglutinin deposited on gold electrode

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boon ACM, French AMF, Fleming DM, Zambon MC (2001) J Med Virol 65:163–170

    Article  CAS  Google Scholar 

  2. Santana WI, Williams TL, Winne EK, Pirkle JL, Barr JR (2014) Anal Chem 86:4088–4095

    Article  CAS  Google Scholar 

  3. Dhumpa R, Handberg KJ, Jørgensen PH, Yi S, Wolff A, Bang DD (2011) Diagn Microbiol Infect Dis 69:258–265

    Article  CAS  Google Scholar 

  4. Gopinath SCB, Tang T-H, Citartan M, Chen Y, Lakshmipriya T (2014) Biosens Bioelectron 57:292–302

    Article  CAS  Google Scholar 

  5. Pohanka M, Skládal P (2008) J Appl Biomed 6:57–64

    CAS  Google Scholar 

  6. Jung S-H, Jang H, Lim M-C, Kim J-H, Shin K-S, Kim SM, Kim H-Y, Kim Y-R, Jeon T-J (2015) Anal Chem 87:2072–2078

    Article  CAS  Google Scholar 

  7. Chen J, Zhou S, Wen J (2014) Anal Chem 86:3108–3114

    Article  CAS  Google Scholar 

  8. Pienno PAE, Krull UJ (2005) Anal Bioanal Chem 381:10004–11011

    Google Scholar 

  9. Moore KE, Flavel BS, Yu J, Abell AA, Shapte JG (2013) Electrochim Acta 89:206–211

    Article  CAS  Google Scholar 

  10. Hepel M, Zhong C-J (2012) Functional nanoparticles for bioanalysis, nanomedicine, and bioelectronic devices. ACS Symp Ser 1:293–312

    Google Scholar 

  11. Eckermann AL, Feld DJ, Shaw JA, Meade TJ (2010) Coord Chem Rev 254:1769–1802

    Article  CAS  Google Scholar 

  12. Balland V, Hureau C, Chusano AM, Liu Y, Tron T, Limoges B (2008) Chem Eur J 14:7186–7192

    CAS  Google Scholar 

  13. Johnson DL, Martin LL (2005) J Am Chem Soc 127:2018–2019

    Article  CAS  Google Scholar 

  14. Mayer D, Ataka KF, Knoll W, Naumann R, Haber-Pohlmeier S, Richter B, Heberle J (2004) J Am Chem Soc 126:16199–16206

    Article  Google Scholar 

  15. Ataka K, Giess F, Knoll W, Naumann R, Haber-Pohlmeier S, Richter B, Heberle J (2004) J Am Chem Soc 126:16199–16206

    Article  CAS  Google Scholar 

  16. Mikuła E, Wysłouch-Cieszyńska A, Zhukova L, Puchalska M, Verwilst P, Dehaen W, Radecki J, Radecka H (2014) Sensors 14:10650–10663

    Article  Google Scholar 

  17. Jargiło A, Grabowska I, Radecka H, Sulima M, Marszałek I, Wysłouch-Cieszyńska A, Dehaen W, Radecki J (2013) Electroanalysis 25:1185–1193

    Article  Google Scholar 

  18. Szymańska I, Orlewska CZ, Janssen D, Dehaen W, Radecka H (2008) Electrochim Acta 53:7932–7940

    Article  Google Scholar 

  19. Kurzątkowska K, Mielecki M, Grzelak K, Verwilst P, Dehaen W, Radecki J, Radecka H (2014) Talanta 130:336–341

    Article  Google Scholar 

  20. Swartz ME, Krull IS (2012) Handbook of analytical validation, CRC Press Taylor & Francis Group

  21. Stachyra A, Góra-Sochacka A, Sawicka R, Florys A, Sączyńska V, Olszewska M, Pikuła A, Śmietanka K, Minta Z, Szewczyk B, Zagórski W, Sirko A (2014) Trials Vaccinol 3:40–49

    Article  Google Scholar 

  22. Jarocka U, Sawicka R, Góra-Sochacka A, Sirko A, Zagórski-Ostoja W, Radecki J, Radecka H (2014) Biosens Bioelectron 55:301–306

    Article  CAS  Google Scholar 

  23. Stobiecka M, Hepel M (2011) Biosens Bioelectron 26:3524–3530

    Article  CAS  Google Scholar 

  24. Arya SK, Kongsuphol P, Wong CC, Polla LJ, Park MK (2014) Sensors Actuators B 194:127–133

    Article  CAS  Google Scholar 

  25. Derkus B, Emregul KC, Mazi H, Emregul E, Yumak T, Sinag A (2014) Bioprocess Biosyst Eng 37:965–976

    Article  CAS  Google Scholar 

  26. Dulay SB, Julich S, Tomaso H, O’Sullivan CK (2014) Anal Bioanal Chem 406:4685–4690

    Article  CAS  Google Scholar 

  27. Manfredia A, Mattarozzia M, Giannettoa M, Careri M (2014) Sensors Actuators B 201:300–307

    Article  Google Scholar 

  28. Zhou J, Gan N, Li T, Hu F, Li X, Wang L, Zheng L (2014) Biosens Bioelectron 54:199–206

    Article  CAS  Google Scholar 

  29. Cao X, Liu S, Feng Q, Wang N (2013) Biosens Bioelectron 49:256–262

    Article  CAS  Google Scholar 

  30. Song W, Li H, Liu H, Wu Z, Qiang W, Xu D (2013) Electrochem Commun 31:16–19

    Article  CAS  Google Scholar 

  31. Mashazi P, Tetyana P, Vilakazi S, Nyokong T (2013) Biosens Bioelectron 49:32–38

    Article  CAS  Google Scholar 

  32. Souto DEP, Silva JV, Martins HR, Reis AB, Luz RCS, Kubota LT, Damos FS (2013) Biosens Bioelectron 46:22–29

    Article  CAS  Google Scholar 

  33. Puttharugsa C, Wangkam T, Houngkamhang N, Yodmongkol S, Gajanandana O, Himananto O, Sutapun B, Amarit R, Somboonkaew A, Srikhirin T (2013) Curr Appl Phys 13:1008–1013

    Article  Google Scholar 

  34. Jarocka U, Sawicka R, Góra-Sochacka A, Sirko A, Zagórski-Ostoja W, Radecki J, Radecka H (2014) Sensors 14:15714–15728

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Violetta Cecuda-Adamczewska and Grażyna Płucienniczak from Institute of Biotechnology and Antibiotics (Warsaw, Poland) for the hybridoma culture producing Mab 6-9-1. This work was supported by the National Centre for Research and Development (NCBiR) under grant no. PBS2/A7/14/2014, grant no. 679/N-BELGIA/2010/0, COST Action CM10005 “Supramolecular Chemistry in Water” and Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland. Wim Dehaen thanks the University of Leuven, the FWO-Vlaanderen, and the Ministerie voor Wetenschapsbeleid for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Radecka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarocka, U., Sawicka, R., Stachyra, A. et al. A biosensor based on electroactive dipyrromethene-Cu(II) layer deposited onto gold electrodes for the detection of antibodies against avian influenza virus type H5N1 in hen sera. Anal Bioanal Chem 407, 7807–7814 (2015). https://doi.org/10.1007/s00216-015-8949-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8949-y

Keywords

Navigation