Skip to main content
Log in

Counter-pressure-assisted ITP with electrokinetic injection under field-amplified conditions for bacterial analysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Counter-pressure was used to extend the duration of field-amplified sample injection in isotachophoresis (FASI-ITP) in order to improve the detection of bacterial cells. Using 0.51-μm negatively charged encapsulated fluorescent beads as a model, the counter-pressure, injection and separation voltages, and times were optimized. Using 6-min 8,963-Pa counter-pressure FASI-ITP injections at −12 kV followed by mobilization of the ITP band with continued injection at −6 kV, the limit of detection (LOD) for Escherichia coli was improved to 78 cells/mL, a factor of 4 when compared with FASI-ITP without counter-pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CFU:

Colony-forming unit

FASI:

Field-amplified sample injection

LE:

Leading electrolyte

TE:

Terminating electrolyte

References

  1. Emmerson AM (2001) Emerging waterborne infections in health-care settings. Emerg Infect Dis 7:272–276

    Article  CAS  Google Scholar 

  2. Jasson V, Jacxsens L, Luning P et al (2010) Alternative microbial methods: an overview and selection criteria. Food Microbiol 27:710–730

    Article  Google Scholar 

  3. Peters RPH, van Agtmael MA, Danner SA et al (2004) New developments in the diagnosis of bloodstream infections. Lancet Infect Dis 4:751–760

    Article  CAS  Google Scholar 

  4. Al-Harbi AH, Naim Uddin M (2004) Seasonal variation in the intestinal bacterial flora of hybrid tilapia (Oreochromis niloticus × Oreochromis aureus) cultured in earthen ponds in Saudi Arabia. Aquaculture 229:37–44

    Article  Google Scholar 

  5. Resende JA, Silva VL, Fontes CO et al (2012) Multidrug-resistance and toxic metal tolerance of medically important bacteria isolated from an aquaculture system. Microbes Environ 27:449–455

    Article  Google Scholar 

  6. Paillard C, Le Roux F, Borrego JJ (2004) Bacterial disease in marine bivalves, a review of recent studies: trends and evolution. Aquat Living Resour 17:477–498

    Article  Google Scholar 

  7. Oukacine F, Quirino JP, Garrelly L et al (2011) Simultaneous electrokinetic and hydrodynamic injection for high sensitivity bacteria analysis in capillary electrophoresis. Anal Chem 83:4949–4954

    Article  CAS  Google Scholar 

  8. Lantz AW, Bao Y, Armstrong DW (2007) Single-cell detection: test of microbial contamination using capillary electrophoresis. Anal Chem 79:1720–1724

    Article  CAS  Google Scholar 

  9. Rosmini MR, Signorini ML, Schneider R, Bonazza JC (2004) Evaluation of two alternative techniques for counting mesophilic aerobic bacteria in raw milk. Food Control 15:39–44

    Article  Google Scholar 

  10. Oukacine F, Garrelly L, Romestand B et al (2011) Focusing and mobilization of bacteria in capillary electrophoresis. Anal Chem 83:1571–1578

    Article  CAS  Google Scholar 

  11. Petr J, Maier V (2012) Analysis of microorganisms by capillary electrophoresis. Trends Anal Chem 31:9–22

    Article  CAS  Google Scholar 

  12. Phung SC, Nai YH, Powell SM et al (2013) Rapid and sensitive microbial analysis by capillary isotachophoresis with continuous electrokinetic injection under field amplified conditions. Electrophoresis 34:1657–1662

    Article  CAS  Google Scholar 

  13. Hjerten S, Elenbring K, Kilár F et al (1987) Carrier-free zone electrophoresis, displacement electrophoresis and isoelectric focusing in a high-performance electrophoresis apparatus. J Chromatogr A 403:47–61

    Article  CAS  Google Scholar 

  14. Ebersole RC, McCormick RM (1993) Separation and isolation of viable bacteria by capillary zone electrophoresis. Nature Biotechnology 11:1278–1282

    Article  CAS  Google Scholar 

  15. Unkovich M, Stevens D, Ying G-G, Kelly J (2004) Impacts on crop quality from irrigation with water reclaimed from sewage. Australian Water Conservation and Reuse Research Program report: 1–62

  16. NHMRC, NRMMC (2011) Australian Drinking Water Guidelines Paper 6 National Water Quality management Strategy. National Resource Management Ministerial Council, Commonwealth of Australia, Canberra

  17. Petr J, Jiang C, Sevcik J et al (2009) Sterility testing by CE: a comparison of online preconcentration approaches in capillaries with greater internal diameters. Electrophoresis 30:3870–3876

    Article  CAS  Google Scholar 

  18. Breadmore MC (2009) Electrokinetic and hydrodynamic injection: making the right choice for capillary electrophoresis. Bioanalysis 1:889–894

    Article  CAS  Google Scholar 

  19. Breadmore MC (2012) Capillary and microchip electrophoresis: challenging the common conceptions. J Chromatogr A 1221:42–55

    Article  CAS  Google Scholar 

  20. Breadmore MC, Quirino JP (2008) 100 000-fold concentration of anions in capillary zone electrophoresis using electroosmotic flow controlled counterflow isotachophoretic stacking under field amplified conditions. Anal Chem 80:6373–6381

    Article  CAS  Google Scholar 

  21. Breadmore MC, Dawod M, Quirino JP (2010) Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2008–2010). Electrophoresis 32:127–148

    Article  Google Scholar 

  22. Reinhoud NJ, Tjaden UR, van der Greef J (1993) Automated isotachophoretic analyte focusing for capillary zone electrophoresis in a single capillary using hydrodynamic back-pressure programming. J Chromatogr A 641:155–162

    Article  CAS  Google Scholar 

  23. Reinhoud NJ, Tjaden UR, van der Greef J (1993) Strategy for setting up single-capillary isotachophoresis zone electrophoresis. J Chromatogr A 653:303–312

    Article  CAS  Google Scholar 

  24. Feng Y-L, Zhu J (2006) On-line enhancement technique for the analysis of nucleotides using capillary zone electrophoresis/mass spectrometry. Anal Chem 78:6608–6613

    Article  CAS  Google Scholar 

  25. Dawod M, Breadmore MC, Guijt RM, Haddad PR (2009) Counter-flow electrokinetic supercharging for the determination of non-steroidal anti-inflammatory drugs in water samples. J Chromatogr A 1216:3380–3386

    Article  CAS  Google Scholar 

  26. Breadmore MC (2008) Unlimited-volume stacking of ions in capillary electrophoresis. Part 1: Stationary isotachophoretic stacking of anions. Electrophoresis 29:1082–1091

    Article  CAS  Google Scholar 

  27. Breadmore MC (2010) Electroosmotic flow-balanced isotachophoretic stacking with continuous electrokinetic injection for the concentration of anions in high conductivity samples. J Chromatogr A 1217:3900–3906

    Article  CAS  Google Scholar 

  28. Schoch RB, Ronaghi M, Santiago JG (2009) Rapid and selective extraction, isolation, preconcentration, and quantitation of small RNAs from cell lysate using on-chip isotachophoresis. Lab Chip 9:2145

    Article  CAS  Google Scholar 

  29. Persat A, Marshall LA, Santiago JG (2009) Purification of nucleic acids from whole blood using isotachophoresis. Anal Chem 81:9507–9511

    Article  CAS  Google Scholar 

  30. Persat A, Santiago JG (2011) MicroRNA profiling by simultaneous selective isotachophoresis and hybridization with molecular beacons. Anal Chem 83:2310–2316

    Article  CAS  Google Scholar 

  31. Rogacs A, Qu Y, Santiago JG (2012) Bacterial RNA extraction and purification from whole human blood using isotachophoresis. Anal Chem 84:5858–5863

    Article  CAS  Google Scholar 

  32. Garcia-Schwarz G, Santiago JG (2012) Integration of on-chip isotachophoresis and functionalized hydrogels for enhanced-sensitivity nucleic acid detection. Anal Chem 84:6366–6369

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MCB acknowledges the ARC for a Future Fellowship (FT130100101). M.M. also acknowledges his ARC Future Fellowship Level 3 (FT120100559).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Breadmore.

Additional information

Published in the topical collection Capillary Electrophoresis of Biomolecules with guest editor Lisa Holland

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phung, S.C., Nai, Y.H., Macka, M. et al. Counter-pressure-assisted ITP with electrokinetic injection under field-amplified conditions for bacterial analysis. Anal Bioanal Chem 407, 6995–7002 (2015). https://doi.org/10.1007/s00216-015-8838-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8838-4

Keywords

Navigation