Skip to main content
Log in

A high-throughput sphingomyelinase assay using natural substrate

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Sphingomyelinases are a group of hydrolases that cleave sphingomyelin, a common component of plasma membranes, to form ceramide and phosphocholine. Ceramide is a second messenger that is present in virtually all cell types and regulates a variety of cellular functions such as proliferation, differentiation, apoptosis, and inflammation response. Inhibition of sphingomyelinase activity to reduce ceramide concentrations has recently emerged as a potential therapeutic approach for several diseases including atherosclerosis, pathogen infections, inflammation, diabetes, and obesity. To effectively screen compound collections for the identification of new sphingomyelinase inhibitors, we have developed a high-throughput assay utilizing the natural substrate sphingomyelin in 1,536-well plate format. The assay has a signal-to-basal ratio of 6.1-fold in pH 5.0 buffer and 4.3-fold in pH 6.5 buffer, indicating a robust assay for compound library screening. A screen of ~300,000 compounds using this assay led to the identification of eight compounds as sphingomyelinase inhibitors (IC50s = 1.7 to 38.2 μM) that exhibited different activities between the natural substrate assay and profluorescence substrate assay. The results demonstrate the robustness and effectiveness of the natural substrate sphingomyelinase assay for screening sphingomyelinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pavoine C, Pecker F (2009) Sphingomyelinases: their regulation and roles in cardiovascular pathophysiology. Cardiovasc Res 82(2):175–183

    Article  CAS  Google Scholar 

  2. Schuchman EH (2010) Acid sphingomyelinase, cell membranes and human disease: lessons from Niemann-Pick disease. FEBS Lett 584(9):1895–1900

    Article  CAS  Google Scholar 

  3. Schissel SL, Schuchman EH, Williams KJ, Tabas I (1996) Zn2+-stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. J Biol Chem 271(31):18431–18436

    Article  CAS  Google Scholar 

  4. Schuchman EH, Suchi M, Takahashi T, Sandhoff K, Desnick RJ (1991) Human acid sphingomyelinase. Isolation, nucleotide sequence and expression of the full-length and alternatively spliced cDNAs. J Biol Chem 266(13):8531–8539

    CAS  Google Scholar 

  5. Hofmann K, Tomiuk S, Wolff G, Stoffel W (2000) Cloning and characterization of the mammalian brain-specific, Mg2 + -dependent neutral sphingomyelinase. Proc Natl Acad Sci USA 97(11):5895–5900

    Article  CAS  Google Scholar 

  6. Krut O, Wiegmann K, Kashkar H, Yazdanpanah B, Kronke M (2006) Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J Biol Chem 281(19):13784–13793

    Article  CAS  Google Scholar 

  7. Tomiuk S, Hofmann K, Nix M, Zumbansen M, Stoffel W (1998) Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling? Proc Natl Acad Sci USA 95(7):3638–3643

    Article  CAS  Google Scholar 

  8. Lang F, Ullrich S, Gulbins E (2011) Ceramide formation as a target in beta-cell survival and function. Expert Opin Ther Targets 15(9):1061–1071

    Article  CAS  Google Scholar 

  9. Truman JP, Al Gadban MM, Smith KJ, Hammad SM (2011) Acid sphingomyelinase in macrophage biology. Cell Mol Life Sci 68(20):3293–3305

    Article  CAS  Google Scholar 

  10. Zeidan YH, Hannun YA (2010) The acid sphingomyelinase/ceramide pathway: biomedical significance and mechanisms of regulation. Curr Mol Med 10(5):454–466

    Article  CAS  Google Scholar 

  11. Jenkins RW, Canals D, Hannun YA (2009) Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cell Signal 21(6):836–846

    Article  CAS  Google Scholar 

  12. Becker KA, Riethmuller J, Luth A, Doring G, Kleuser B, Gulbins E (2010) Acid sphingomyelinase inhibitors normalize pulmonary ceramide and inflammation in cystic fibrosis. Am J Respir Cell Mol Biol 42(6):716–724

    Article  CAS  Google Scholar 

  13. Goggel R, Winoto-Morbach S, Vielhaber G, Imai Y, Lindner K, Brade L, Brade H, Ehlers S, Slutsky AS, Schutze S, Gulbins E, Uhlig S (2004) PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide. Nat Med 10(2):155–160

    Article  Google Scholar 

  14. Boini KM, Zhang C, Xia M, Poklis JL, Li PL (2010) Role of sphingolipid mediator ceramide in obesity and renal injury in mice fed a high-fat diet. J Pharmacol Exp Ther 334(3):839–846

    Article  CAS  Google Scholar 

  15. Samad F, Badeanlou L, Shah C, Yang G (2011) Adipose tissue and ceramide biosynthesis in the pathogenesis of obesity. Adv Exp Med Biol 721:67–86

    Article  Google Scholar 

  16. Schmitz-Peiffer C (2010) Targeting ceramide synthesis to reverse insulin resistance. Diabetes 59(10):2351–2353

    Article  CAS  Google Scholar 

  17. Grassme H, Gulbins E, Brenner B, Ferlinz K, Sandhoff K, Harzer K, Lang F, Meyer TF (1997) Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell 91(5):605–615

    Article  CAS  Google Scholar 

  18. Hauck CR, Grassme H, Bock J, Jendrossek V, Ferlinz K, Meyer TF, Gulbins E (2000) Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett 478(3):260–266

    Article  CAS  Google Scholar 

  19. Arenz C (2010) Small molecule inhibitors of acid sphingomyelinase. Cellular physiology and biochemistry. Int J Exp Cell Phys, Biochem, and Pharmacol 26(1):1-8

    Google Scholar 

  20. Kornhuber J, Tripal P, Reichel M, Muhle C, Rhein C, Muehlbacher M, Groemer TW, Gulbins E (2010) Functional inhibitors of acid sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications. Cell Physiol Biochem 26(1):9–20

    Article  CAS  Google Scholar 

  21. Duan RD, Nilsson A (2000) Sphingolipid hydrolyzing enzymes in the gastrointestinal tract. Methods Enzymol 311:276–286

    Article  CAS  Google Scholar 

  22. Liu F, Cheng Y, Wu J, Tauschel HD, Duan RD (2006) Ursodeoxycholic acid differentially affects three types of sphingomyelinase in human colon cancer Caco 2 cells. Cancer Lett 235(1):141–146

    Article  CAS  Google Scholar 

  23. Loidl A, Claus R, Deigner HP, Hermetter A (2002) High-precision fluorescence assay for sphingomyelinase activity of isolated enzymes and cell lysates. J Lipid Res 43(5):815–823

    CAS  Google Scholar 

  24. Mintzer RJ, Appell KC, Cole A, Johns A, Pagila R, Polokoff MA, Tabas I, Snider RM, Meurer-Ogden JA (2005) A novel high-throughput screening format to identify inhibitors of secreted acid sphingomyelinase. J Biomol Screen 10(3):225–234

    Article  CAS  Google Scholar 

  25. van Diggelen OP, Voznyi YV, Keulemans JL, Schoonderwoerd K, Ledvinova J, Mengel E, Zschiesche M, Santer R, Harzer K (2005) A new fluorimetric enzyme assay for the diagnosis of Niemann-Pick A/B, with specificity of natural sphingomyelinase substrate. J Inherit Metab Dis 28(5):733–741

    Article  CAS  Google Scholar 

  26. Shi ZD, Motabar O, Goldin E, Liu K, Southall N, Sidransky E, Austin CP, Griffiths GL, Zheng W (2009) Synthesis and characterization of a new fluorogenic substrate for alpha-galactosidase. Anal Bioanal Chem 394(7):1903–1909

    Article  CAS  Google Scholar 

  27. Motabar O, Shi ZD, Goldin E, Liu K, Southall N, Sidransky E, Austin CP, Griffiths GL, Zheng W (2009) A new resorufin-based alpha-glucosidase assay for high-throughput screening. Anal Biochem 390(1):79–84

    Article  CAS  Google Scholar 

  28. Goldin E, Zheng W, Motabar O, Southall N, Choi JH, Marugan J, Austin CP, Sidransky E (2012) High throughput screening for small molecule therapy for Gaucher disease using patient tissue as the source of mutant glucocerebrosidase. PLoS One 7(1):e29861

    Article  CAS  Google Scholar 

  29. Motabar O, Goldin E, Leister W, Liu K, Southall N, Huang W, Marugan JJ, Sidransky E, Zheng W (2012) A high throughput glucocerebrosidase assay using the natural substrate glucosylceramide. Anal Bioanal Chem 402(2):731–739

    Article  CAS  Google Scholar 

  30. Lansmann S, Ferlinz K, Hurwitz R, Bartelsen O, Glombitza G, Sandhoff K (1996) Purification of acid sphingomyelinase from human placenta: characterization and N-terminal sequence. FEBS Lett 399(3):227–231

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Sam Michael for assistance in robotic screen, Paul Shinn for assistance in compound management, and Seameen J. Dehdashti for critical reading of the manuscript. The authors also thank ATT Bioquest for technical assistance on the assay development and optimization. This research was supported by the Molecular Libraries Initiative of the NIH Roadmap for Medical Research (5U54MH084681-02 and RO3MH093173-01) and the Intramural Research Programs of National Heart, Lung and Blood Institute, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M., Liu, K., Southall, N. et al. A high-throughput sphingomyelinase assay using natural substrate. Anal Bioanal Chem 404, 407–414 (2012). https://doi.org/10.1007/s00216-012-6174-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6174-5

Keywords

Navigation