Skip to main content
Log in

A high throughput glucocerebrosidase assay using the natural substrate glucosylceramide

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Glucocerebrosidase is a lysosomal enzyme that catalyzes the hydrolysis of glucosylceramide to form ceramide and glucose. A deficiency of lysosomal glucocerebrosidase due to genetic mutations results in Gaucher disease, in which glucosylceramide accumulates in the lysosomes of certain cell types. Although enzyme replacement therapy is currently available for the treatment of type 1 Gaucher disease, the neuronopathic forms of Gaucher disease are still not treatable. Small molecule drugs that can penetrate the blood-brain barrier, such as pharmacological chaperones and enzyme activators, are new therapeutic approaches for Gaucher disease. Enzyme assays for glucocerebrosidase are used to screen compound libraries to identify new lead compounds for drug development for the treatment of Gaucher disease. But the current assays use artificial substrates that are not physiologically relevant. We developed a glucocerebrosidase assay using the natural substrate glucosylceramide coupled to an Amplex-red enzyme reporting system. This assay is in a homogenous assay format and has been miniaturized in a 1,536-well plate format for high throughput screening. The assay sensitivity and robustness is similar to those seen with other glucocerebrosidase fluorescence assays. Therefore, this new glucocerebrosidase assay is an alternative approach for high throughput screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grabowski GA (1993) Gaucher disease. Enzymology, genetics, and treatment. Adv Hum Genet 21:377–441

    Article  CAS  Google Scholar 

  2. Sidransky E, LaMarca ME, Ginns EI (2007) Therapy for Gaucher disease: don’t stop thinking about tomorrow. Mol Genet Metab 90(2):122–125

    Article  CAS  Google Scholar 

  3. Smid BE, Aerts JM, Boot RG, Linthorst GE, Hollak CE (2010) Pharmacological small molecules for the treatment of lysosomal storage disorders. Expert Opin Investig Drugs 19(11):1367–1379. doi:10.1517/13543784.2010.524205

    Article  CAS  Google Scholar 

  4. Khanna R, Benjamin ER, Pellegrino L, Schilling A, Rigat BA, Soska R, Nafar H, Ranes BE, Feng J, Lun Y, Powe AC, Palling DJ, Wustman BA, Schiffmann R, Mahuran DJ, Lockhart DJ, Valenzano KJ (2010) The pharmacological chaperone isofagomine increases the activity of the Gaucher disease L444P mutant form of beta-glucosidase. Febs J 277(7):1618–1638

    Article  CAS  Google Scholar 

  5. Beck M (2010) Therapy for lysosomal storage disorders. IUBMB Life 62(1):33–40

    CAS  Google Scholar 

  6. Parenti G (2009) Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol Med 1(5):268–279

    Article  CAS  Google Scholar 

  7. Parenti G, Andria G (2011) Pompe disease: from new views on pathophysiology to innovative therapeutic strategies. Curr Pharm Biotechnol 12(6):902–915

    Article  CAS  Google Scholar 

  8. Rozenfeld P, Neumann PM (2011) Treatment of fabry disease: current and emerging strategies. Curr Pharm Biotechnol 12(6):916–922

    Article  CAS  Google Scholar 

  9. Pastores GM, Giraldo P, Cherin P, Mehta A (2009) Goal-oriented therapy with miglustat in Gaucher disease. Curr Med Res Opin 25(1):23–37

    Article  CAS  Google Scholar 

  10. Owada M, Sakiyama T, Kitagawa T (1977) Neuropathic Gaucher’s disease with normal 4-methylumbelliferyl-beta-glucosidase activity in the liver. Pediatr Res 11(5):641–646

    Article  CAS  Google Scholar 

  11. Broadhead DM, Butterworth J (1977) The diagnosis of Gaucher’s disease in liver using 4-methylumbelliferyl-beta-D-glucopyranoside. Clin Chim Acta 75(1):155–161

    Article  CAS  Google Scholar 

  12. Urban DJ, Zheng W, Goker-Alpan O, Jadhav A, Lamarca ME, Inglese J, Sidransky E, Austin CP (2008) Optimization and validation of two miniaturized glucocerebrosidase enzyme assays for high throughput screening. Comb Chem High Throughput Screen 11(10):817–824

    Article  CAS  Google Scholar 

  13. Hays WS, Wheeler DE, Eghtesad B, Glew RH, Johnston DE (1998) Expression of cytosolic beta-glucosidase in guinea pig liver cells. Hepatology 28(1):156–163

    Article  CAS  Google Scholar 

  14. Zhu BC, Henderson G, Laine RA (2005) Screening method for inhibitors against formosan subterranean termite beta-glucosidases in vivo. J Econ Entomol 98(1):41–46

    Article  CAS  Google Scholar 

  15. van Es HH, Veldwijk M, Havenga M, Valerio D (1997) A flow cytometric assay for lysosomal glucocerebrosidase. Anal Biochem 247(2):268–271

    Article  Google Scholar 

  16. Ben-Yoseph Y, Nadler HL (1978) Pitfalls in the use of artificial substrates for the diagnosis of Gaucher’s disease. J Clin Pathol 31(11):1091–1093

    Article  CAS  Google Scholar 

  17. Wenger D, Olsen GC (1981) Heterogeneity in Gaucher disease. In: Callahan JW, Lowden JA (eds) Lysosomes and lysosomal storage diseases. Raven, New York, pp 157–171

    Google Scholar 

  18. Choy FY, Davidson RG (1980) Gaucher disease. III. Substrate specificity of glucocerebrosidase and the use of nonlabeled natural substrates for the investigation of patients. Am J Hum Genet 32(5):670–680

    CAS  Google Scholar 

  19. Hayashi Y, Zama K, Abe E, Okino N, Inoue T, Ohno K, Ito M (2008) A sensitive and reproducible fluorescent-based HPLC assay to measure the activity of acid as well as neutral beta-glucocerebrosidases. Anal Biochem 383(1):122–129

    Article  CAS  Google Scholar 

  20. Mazura P, Fohlerova R, Brzobohaty B, Kiran NS, Janda L (2006) A new, sensitive method for enzyme kinetic studies of scarce glucosides. J Biochem Biophys Methods 68(1):55–63

    Article  CAS  Google Scholar 

  21. Zhu Y, Jiang JL, Gumlaw NK, Zhang J, Bercury SD, Ziegler RJ, Lee K, Kudo M, Canfield WM, Edmunds T, Jiang C, Mattaliano RJ, Cheng SH (2009) Glycoengineered acid alpha-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease. Mol Ther 17(6):954–963

    Article  CAS  Google Scholar 

  22. Marugan JJ, Zheng W, Motabar O, Southall N, Goldin E, Sidransky E, Aungst RA, Liu K, Sadhukhan SK, Austin CP (2010) Evaluation of 2-thioxo-2,3,5,6,7,8-hexahydropyrimido[4,5-d]pyrimidin-4(1H)-one analogues as GAA activators. Eur J Med Chem 45(5):1880–1897

    Article  CAS  Google Scholar 

  23. Motabar O, Liu K, Southall N, Marugan JJ, Goldin E, Sidransky E, Zheng W (2010) High throughput screening for inhibitors of alpha-galactosidase. Curr Chem Genomics 4:67–73

    Article  CAS  Google Scholar 

  24. Peters SP, Coyle P, Glew RH (1976) Differentiation of beta-glucocerebrosidase from beta-glucosidase in human tissues using sodium taurocholate. Arch Biochem Biophys 175(2):569–582

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Molecular Libraries Initiative of the NIH Roadmap for Medical Research and the Intramural Research Programs of the National Human Genome Research Institute and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motabar, O., Goldin, E., Leister, W. et al. A high throughput glucocerebrosidase assay using the natural substrate glucosylceramide. Anal Bioanal Chem 402, 731–739 (2012). https://doi.org/10.1007/s00216-011-5496-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5496-z

Keyword

Navigation