Skip to main content
Log in

Bond length contraction in gold nanoparticles

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The structure of nanoparticles typically differs from its bulk counterpart. Predominantly, the structures of gold nanoparticles have been under exceedingly intense discussion since the discovery of their high catalytic activity. We found an increasing bond length contraction with decreasing particle size for citrate-stabilized gold nanoparticles in aqueous solution as determined by in situ extended X-ray absorption fine structure (EXAFS) spectroscopy. Particle sizes and size distributions were determined by small-angle X-ray scattering. The analysis of the obtained EXAFS spectra employing ab initio calculations reveals that the Au–Au bond length undergoes a contraction of 2 pm for nanoparticles with a radius of 2.9 nm. NIST reference material RM 8011 gold nanoparticles with a radius of 4.4 nm exhibit a smaller contraction of approximately 1 pm. Finally, gold atoms in RM 8013 particles with a radius of 25.7 nm show distances of 288 pm—identical to the distance in gold foil—and exhibits bulk-like properties. The observed bond length contraction of gold nanoparticles in solution is significantly smaller than previously reported for gold nanoparticle deposited on surfaces, which is up to 15 pm. This indicates that the bond length contraction effect of “free” and “surface-immobilized” nanoparticles differ fundamentally. Such difference could be essential for the understanding of nanoparticle-supported catalysis.

Correlation of the Au-Au bond length contraction relative to the bulk gold standard Delta R to the inverse mean particle radius measured by SAXS

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025

    Article  CAS  Google Scholar 

  2. Das SK, Das AR, Guha AK (2009) Langmuir 25:8192

    Article  CAS  Google Scholar 

  3. Han J, Liu Y, Guo R (2009) Adv Funct Mater 19:1112

    Article  CAS  Google Scholar 

  4. Algar WR, Massey M, Krull UJ (2009) Trac-Trends Anal Chem 28:292

    Article  Google Scholar 

  5. Daniel MC, Astruc D (2004) Chem Rev 104:293

    Article  CAS  Google Scholar 

  6. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chemistry Letters 2:405

    Article  Google Scholar 

  7. Hashmi ASK, Hutchings GJ (2006) Angew Chem Int Ed 45:7896

    Article  Google Scholar 

  8. Jia CJ, Liu Y, Bongard H, Schuth F (2010) J Am Chem Soc 132:1520

    Article  CAS  Google Scholar 

  9. Billinge SJL, Levin I (2007) Science 316:561

    Article  CAS  Google Scholar 

  10. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Science 318:430

    Article  CAS  Google Scholar 

  11. Zhou XC, Xu WL, Liu GK, Panda D, Chen P (2010) Journal of the American Chemical Society 132:138

    Article  CAS  Google Scholar 

  12. Miller JT, Kropf AJ, Zha Y, Regalbuto JR, Delannoy L, Louis C, Bus E, van Bokhoven JA (2006) J Catal 240:222

    Article  CAS  Google Scholar 

  13. Beale AM, Weckhuysen BM (2010) Phys Chem Chem Phys 12:5562

    Article  CAS  Google Scholar 

  14. Reifsnyder SN, Lamb HH (1999) J Phys Chem B 103:321

    Article  CAS  Google Scholar 

  15. Schmid G, Meyer-Zaika W, Pugin R, Sawitowski T, Majoral JP, Caminade AM, Turrin CO (2000) Chem Eur J 6:1693

    Article  CAS  Google Scholar 

  16. Zhang P, Sham TK (2002) Appl Phys Lett 81:736

    Article  CAS  Google Scholar 

  17. Balerna A, Bernieri E, Picozzi P, Reale A, Santucci S, Burattini E, Mobilio S (1985) Surf Sci 156:206

    Article  CAS  Google Scholar 

  18. Harada M, Saijo K, Sakamoto N (2009) Colloids Surf A Physicochem Eng Asp 349:176

    Article  CAS  Google Scholar 

  19. Frens G (1973) Nature-Physical Science 241:20

    CAS  Google Scholar 

  20. Stribeck N (2006) X-ray scattering of soft matter. Springer, Berlin

    Google Scholar 

  21. Bienert R, Emmerling F, Thunemann AF (2009) Anal Bioanal Chem 395:1651

    Article  CAS  Google Scholar 

  22. Newville M (2001) J Synchrotron Radiat 8:322

    Article  CAS  Google Scholar 

  23. Paris O, Li CH, Siegel S, Weseloh G, Emmerling F, Riesemeier H, Erko A, Fratzl P (2007) J Appl Crystallogr 40:S466

    Article  CAS  Google Scholar 

  24. Nelder JA, Mead R (1965) Comput J 7:308

    Google Scholar 

  25. Ravel B, Newville M (2005) J Synchrotron Radiat 12:537

    Article  CAS  Google Scholar 

  26. Ankudinov AL, Nesvizhskii AI, Rehr JJ (2003) Phys Rev B 67:115120

    Article  Google Scholar 

  27. Kline SR (2006) J Appl Crystallogr 39:895

    Article  CAS  Google Scholar 

  28. Polte J, Ahner TT, Delissen F, Sokolov S, Emmerling F, Thunemann AF, Kraehnert R (2010) J Am Chem Soc 132:1296

    Article  CAS  Google Scholar 

  29. Cleveland CL, Landman U, Schaaff TG, Shafigullin MN, Stephens PW, Whetten RL (1997) Phys Rev Lett 79:1873

    Article  CAS  Google Scholar 

  30. Uppenbrink J, Wales DJ (1992) J Chem Phys 96:8520

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for access to the facilities of BESSY. This research was supported by BAM. We thank U. Reinholz and M. Radtke for help with EXAFS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas F. Thünemann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM (PDF 502 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szczerba, W., Riesemeier, H. & Thünemann, A.F. Bond length contraction in gold nanoparticles. Anal Bioanal Chem 398, 1967–1972 (2010). https://doi.org/10.1007/s00216-010-4200-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4200-z

Keywords

Navigation