Skip to main content
Log in

Oxidation states, atomic charges and orbital populations in transition metal complexes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The differences and similarities between calculated atomic charge and formal oxidation state in transition metal complexes are discussed in the light of density functional theory calculations on a variety of four-coordinate complexes. It is shown that the oxidation state formalism provides a framework for the classification of families of compounds related by ligand substitution or redox processes, and can neither be replaced by nor deduced from net atomic charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In Pauling’s words: “In a covalent compound of known structure, the oxidation number of each atom is the charge remaining on the atom when each shared electron pair is assigned completely to the more electronegative of the two atoms sharing it” [8].

  2. A significant example of an inverted ligand field was found in band electronic structure calculations of the LaFe4P12 skutterudite, which showed that the Fermi level has more phosphorus than Fe 3d character, and lead to the conclusion that its superconductivity is associated with the phosphorus sublattice rather than with the iron atoms [18].

References

  1. Mingos DMP (1998) Essential trends in inorganic chemistry. Oxford University Press, Oxford

    Google Scholar 

  2. Jones CJ (2002) d- and f-Block chemistry. Wiley, New York

    Google Scholar 

  3. Pearson RG (2005) Chemical hardness. Wiley, Weinheim

    Google Scholar 

  4. Alvarez S, Hoffmann R, Mealli C (2008) (submitted)

  5. Snyder JP (1995) Angew Chem Int Ed Engl 34:80. doi:10.1002/anie.199500801

    Article  CAS  Google Scholar 

  6. Kaupp M, Schnering HGV (1995) Angew Chem Int Ed Engl 34:986

    Article  CAS  Google Scholar 

  7. Snyder JP (1995) Angew Chem Int Ed Engl 34:986. doi:10.1002/anie.199509862

    Article  CAS  Google Scholar 

  8. Pauling L (1948) J Chem Soc 1461. doi:10.1039/jr9480001461

  9. Pauling L (1960) The nature of the chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  10. Zanello P (2003) Inorganic electrochemistry. Theory, practice and application. Royal Society of Chemistry, Cambridge

    Google Scholar 

  11. Lever ABP (1990) Inorg Chem 29:1271. doi:10.1021/ic00331a030

    Article  CAS  Google Scholar 

  12. Cirera J, Ruiz E, Alvarez S (2008) Inorg Chem 47:2871. doi:10.1021/ic702276k

    Article  CAS  Google Scholar 

  13. Alvarez S, Alemany P, Casanova D, Cirera J, Llunell M, Avnir D (2005) Coord Chem Rev 249:1693. doi:10.1016/j.ccr.2005.03.031

    Article  CAS  Google Scholar 

  14. Harwell DE, McMillan J, Knobler CB, Hawthorne MF (1997) Inorg Chem 36:5951. doi:10.1021/ic9706313

    Article  CAS  Google Scholar 

  15. Eujen R, Hoge B, Brauer DJ (1996) J Organomet Chem 519:7. doi:10.1016/S0022-328X(96)06142-6

    Article  CAS  Google Scholar 

  16. Naumann D, Roy T, Tebbe K-F, Crump W (1993) Angew Chem Int Ed Engl 32:1482. doi:10.1002/anie.199314821

    Article  Google Scholar 

  17. Schlueter JA, Geiser U, Williams JM, Wang HH, Kwok W-K, Fendrich JA, Carlson KD, Achenbach CA, Dudek JD, Naumann D, Roy T, Schirber JE, Bayless WR (1994) J Chem Soc Chem Commun 1599

  18. Jung D, Whangbo M-H, Alvarez S (1990) Inorg Chem 29:2252. doi:10.1021/ic00337a015

    Article  CAS  Google Scholar 

  19. Lowe JP (1978) Quantum chemistry. Academic Press, London

    Google Scholar 

  20. Jansen M, Wedig U (2008) Angew Chem Int Ed 47:2. doi:10.1002/anie.200803605

    Article  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida T, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian Inc., Wallingford, CT

  22. Becke AD (1993) J Chem Phys 98:5648. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  23. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  24. Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829. doi:10.1063/1.467146

    Article  Google Scholar 

  25. Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571. doi:10.1063/1.463096

    Article  Google Scholar 

  26. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113. doi:10.1063/1.1622924

    Article  CAS  Google Scholar 

  27. Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563. doi:10.1063/1.1305880

    Article  CAS  Google Scholar 

  28. Carvajal MA, Alvarez S, Novoa JJ (2004) J Am Chem Soc 126:1465. doi:10.1021/ja038416a

    Article  CAS  Google Scholar 

  29. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899. and references therein. doi:10.1021/cr00088a005

  30. Cioslowski J (1989) J Am Chem Soc 111:8333. doi:10.1021/ja00204a001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support to this work was provided by the Dirección General de Investigación Científica (MICINN) through grant CTQ2005-08123-C02-02/BQU and by Comissionat per a Universitats i Recerca (Generalitat de Catalunya), grant 2005SGR-0036. The computing resources at the Centre de Supercomputació de Catalunya (CESCA) were made available in part through a grant from Fundació Catalana per a la Recerca (FCR) and Universitat de Barcelona. The authors thank R. Hoffmann and C. Mealli for intense discussions that inspired this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Alvarez.

Additional information

Dedicated to Professor Santiago Olivella on the occasion of his 65th birthday and published as part of the Olivella Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting information (DOC 187 kb)

Appendix: Computational details

Appendix: Computational details

Unrestricted density functional calculations were carried out using the GAUSSIAN03 package [21], with the B3LYP hybrid method that employs the Becke three parameters exchange functional [22] and the Lee-Yang-Parr correlation functional [23]. An all-electron triple-ζ basis set was used for all transition metals [24], supplemented with two polarization functions [24, 25]. A basis set of similar quality was used for the main group elements [24], supplemented with extra polarization and diffuse functions, except for the H atoms not bonded to a metal [25]. An effective core pseudopotential was used for I [26] and Sb [27]. The following complexes were fully optimized: [CuIIIL4]3+ (L = He, NH3, PH3, AsH3, SbH3), [CuIIIX4] (X = H, CF3, CH3, SiH3, SnH3, F, Cl, Br, I, OH, SH and SeH), [CuIIL4]2+ (L = He, NH3 and PH3), [CuIIX4]2− (X = H, CF3 and Cl), [CuIL4]+ (L = He, NH3 and PH3), [CuIX4]3− (X = H, CF3), [ScF4], [TiF4], [VF4]+, [VOF3], [CrO2F2], [MnO3F], [VO4]3−, [CrO4]2− and [MnO4]. The geometries of all Cu complexes were verified to correspond to minima in the potential energy surface through vibrational analyses. The [CuIX4]3− anions (X = F, Cl, Br and I) have not been included in this study because they had been found previously to be unstable toward ligand dissociation [28]. The calculated charges reported were obtained from a natural population analysis [29], but the same qualitative trends were obtained with the atomic polar tensors (APT) method [30] (see Supporting Information).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aullón, G., Alvarez, S. Oxidation states, atomic charges and orbital populations in transition metal complexes. Theor Chem Acc 123, 67–73 (2009). https://doi.org/10.1007/s00214-009-0537-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0537-9

Keywords

Navigation