Skip to main content

Advertisement

Log in

Effect of progressive high-impact exercise on femoral neck structural strength in postmenopausal women with mild knee osteoarthritis: a 12-month RCT

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

It is uncertain whether subjects with mild knee osteoarthritis, and who may be at risk of osteoporosis, can exercise safely with the aim of improving hip bone strength. This RCT showed that participating in a high-impact exercise program improved femoral neck strength without any detrimental effects on knee cartilage composition.

Introduction

No previous studies have examined whether high-impact exercise can improve bone strength and articular cartilage quality in subjects with mild knee osteoarthritis. In this 12-month RCT, we assessed the effects of progressive high-impact exercise on femoral neck structural strength and biochemical composition of knee cartilage in postmenopausal women.

Methods

Eighty postmenopausal women with mild knee radiographic osteoarthritis were randomly assigned into the exercise (n = 40) or control (n = 40) group. Femoral neck structural strength was assessed with dual-energy X-ray absorptiometry. The knee cartilage region exposed to exercise loading was measured by the quantitative MRI techniques of T2 mapping and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). Also, an accelerometer-based body movement monitor was used to evaluate the total physical activity loading on the changes of femoral neck strength in all participants. Training effects on the outcome variables were estimated by the bootstrap analysis of covariance.

Results

A significant between-group difference in femoral neck bending strength in favor of the trainees was observed after the 12-month intervention (4.4%, p < 0.01). The change in femoral neck bending strength remained significant after adjusting for baseline value, age, height, and body mass (4.0%, p = 0.020). In all participants, the change in bending strength was associated with the total physical activity loading (r = 0.29, p = 0.012). The exercise participation had no effect on knee cartilage composition.

Conclusion

The high-impact training increased femoral neck strength without having any harmful effect on knee cartilage in women with mild knee osteoarthritis. These findings imply that progressive high-impact exercise is a feasible method in seeking to prevent hip fractures in postmenopausal women whose articular cartilage may also be frail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Childs JD, Sparto PJ, Fitzgerald GK, Bizzini M, Irrgang JJ (2004) Alterations in lower extremity movement and muscle activation patterns in individuals with knee osteoarthritis. Clin Biomech (Bristol, Avon) 19:44–49

    Article  Google Scholar 

  2. Winter, CC, Brandes, M, Muller, C, Schubert, T, Ringling, M, Hillmann, A, Rosenbaum, D, Schulte, TL 2010 Walking ability during daily life in patients with osteoarthritis of the knee or the hip and lumbar spinal stenosis: a cross sectional study. BMC Musculoskelet Disord 11:233-2474-11-233.

  3. Soininvaara TA, Miettinen HJ, Jurvelin JS, Alhava EM, Kröger HP (2004) Bone mineral density in the proximal femur and contralateral knee after total knee arthroplasty. J Clin Densitom 7:424–431

    Article  PubMed  Google Scholar 

  4. Rittweger J, Frost HM, Schiessl H, Ohshima H, Alkner B, Tesch P, Felsenberg D (2005) Muscle atrophy and bone loss after 90 days’ bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone 36:1019–1029

    Article  PubMed  Google Scholar 

  5. Ward KA, Caulton JM, Adams JE, Mughal MZ (2006) Perspective: cerebral palsy as a model of bone development in the absence of postnatal mechanical factors. J Musculoskelet Neuronal Interact 6:154–159

    CAS  PubMed  Google Scholar 

  6. El Miedany YM, Mehanna AN, El Baddini MA (2000) Altered bone mineral metabolism in patients with osteoarthritis. Joint Bone Spine 67:521–527

    Article  CAS  PubMed  Google Scholar 

  7. Antoniades L, MacGregor AJ, Matson M, Spector TD (2000) A cotwin control study of the relationship between hip osteoarthritis and bone mineral density. Arthritis Rheum 43:1450–1455

    Article  CAS  PubMed  Google Scholar 

  8. Nevitt MC, Cummings SR, Lane NE, Hochberg MC, Scott JC, Pressman AR, Genant HK, Cauley JA (1996) Association of estrogen replacement therapy with the risk of osteoarthritis of the hip in elderly white women. Study of Osteoporotic Fractures Research Group. Arch Intern Med 156:2073–2080

    Article  CAS  PubMed  Google Scholar 

  9. Stevenson JC (2011) A woman’s journey through the reproductive, transitional and postmenopausal periods of life: impact on cardiovascular and musculo-skeletal risk and the role of estrogen replacement. Maturitas 70:197–205

    Article  PubMed  Google Scholar 

  10. Greendale GA, Barrett-Connor E, Ingles S, Haile R (1995) Late physical and functional effects of osteoporotic fracture in women: the Rancho Bernardo Study. J Am Geriatr Soc 43:955–961

    Article  CAS  PubMed  Google Scholar 

  11. Magaziner J, Fredman L, Hawkes W, Hebel JR, Zimmerman S, Orwig DL, Wehren L (2003) Changes in functional status attributable to hip fracture: a comparison of hip fracture patients to community-dwelling aged. Am J Epidemiol 157:1023–1031

    Article  PubMed  Google Scholar 

  12. Hernlund, E, Svedbom, A, Ivergard, M, Compston, J, Cooper, C, Stenmark, J, McCloskey, EV, Jonsson, B, Kanis, JA 2013 Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136-013-0136-1. Epub 2013 Oct 11.

  13. Bonaiuti D, Shea B, Iovine R, Negrini S, Robinson V, Kemper HC, Wells G, Tugwell P, Cranney A (2002) Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev 3:CD000333

    Google Scholar 

  14. Kanis JA, Burlet N, Cooper C, Delmas PD, Reginster JY, Borgstrom F, Rizzoli R, European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) (2008) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 19:399–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karinkanta S, Piirtola M, Sievänen H, Uusi-Rasi K, Kannus P (2010) Physical therapy approaches to reduce fall and fracture risk among older adults. Nat Rev Endocrinol 6:396–407

    Article  PubMed  Google Scholar 

  16. Uusi-Rasi K, Kannus P, Cheng S, Sievänen H, Pasanen M, Heinonen A, Nenonen A, Halleen J, Fuerst T, Genant H, Vuori I (2003) Effect of alendronate and exercise on bone and physical performance of postmenopausal women: a randomized controlled trial. Bone 33:132–143

    Article  CAS  PubMed  Google Scholar 

  17. Karinkanta S, Heinonen A, Sievänen H, Uusi-Rasi K, Pasanen M, Ojala K, Fogelholm M, Kannus P (2007) A multi-component exercise regimen to prevent functional decline and bone fragility in home-dwelling elderly women: randomized, controlled trial. Osteoporos Int 18:453–462

    Article  CAS  PubMed  Google Scholar 

  18. Nikander R, Sievänen H, Ojala K, Kellokumpu-Lehtinen PL, Palva T, Blomqvist C, Luoto R, Saarto T (2012) Effect of exercise on bone structural traits, physical performance and body composition in breast cancer patients—a 12-month RCT. J Musculoskelet Neuronal Interact 12:127–135

    CAS  PubMed  Google Scholar 

  19. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, Bierma-Zeinstra S, Brandt KD, Croft P, Doherty M, Dougados M, Hochberg M, Hunter DJ, Kwoh K, Lohmander LS, Tugwell P (2008) OARSI recommendations for the management of hip and knee osteoarthritis, part II: OARSI evidence-based, expert consensus guidelines. Osteoarthr Cartil 16:137–162

    Article  CAS  PubMed  Google Scholar 

  20. Fransen, M, McConnell, S 2008 Exercise for osteoarthritis of the knee. Cochrane Database Syst Rev (4):CD004376.

  21. Juhl C, Christensen R, Roos EM, Zhang W, Lund H (2014) Impact of exercise type and dose on pain and disability in knee osteoarthritis: a systematic review and meta-regression analysis of randomized controlled trials. Arthritis Rheumatol 66:622–636

    Article  CAS  PubMed  Google Scholar 

  22. Multanen J, Nieminen MT, Häkkinen A, Kujala UM, Jämsä T, Kautiainen H, Lammentausta E, Ahola R, Selänne H, Ojala R, Kiviranta I, Heinonen A (2014) Effects of high-impact training on bone and articular cartilage: 12-month randomized controlled quantitative MRI study. J Bone Miner Res 29:192–201

    Article  PubMed  Google Scholar 

  23. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heinonen A, Kannus P, Sievänen H, Oja P, Pasanen M, Rinne M, Uusi-Rasi K, Vuori I (1996) Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. Lancet 348:1343–1347

    Article  CAS  PubMed  Google Scholar 

  25. Khoo BC, Beck TJ, Qiao QH, Parakh P, Semanick L, Prince RL, Singer KP, Price RI (2005) In vivo short-term precision of hip structure analysis variables in comparison with bone mineral density using paired dual-energy X-ray absorptiometry scans from multi-center clinical trials. Bone 37:112–121

    Article  PubMed  Google Scholar 

  26. Tiderius C, Hori M, Williams A, Sharma L, Prasad PV, Finnell M, McKenzie C, Burstein D (2006) dGEMRIC as a function of BMI. Osteoarthr Cartil 14:1091–1097

    Article  CAS  PubMed  Google Scholar 

  27. Watanabe A, Wada Y, Obata T, Ueda T, Tamura M, Ikehira H, Moriya H (2006) Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: preliminary results. Radiology 239:201–208

    Article  PubMed  Google Scholar 

  28. Nissi MJ, Töyräs J, Laasanen MS, Rieppo J, Saarakkala S, Lappalainen R, Jurvelin JS, Nieminen MT (2004) Proteoglycan and collagen sensitive MRI evaluation of normal and degenerated articular cartilage. J Orthop Res 22:557–564

    Article  CAS  PubMed  Google Scholar 

  29. David-Vaudey E, Ghosh S, Ries M, Majumdar S (2004) T2 relaxation time measurements in osteoarthritis. Magn Reson Imaging 22:673–682

    Article  PubMed  Google Scholar 

  30. Ahola R, Korpelainen R, Vainionpää A, Jämsä T (2010) Daily impact score in long-term acceleration measurements of exercise. J Biomech 43:1960–1964

    Article  PubMed  Google Scholar 

  31. Hays RD, Sherbourne CD, Mazel RM (1993) The RAND 36-Item Health Survey 1.0. Health Econ 2:217–227

    Article  CAS  PubMed  Google Scholar 

  32. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW (1988) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15:1833–1840

    CAS  PubMed  Google Scholar 

  33. Heinonen A, Mäntynen J, Kannus P, Uusi-Rasi K, Nikander R, Kontulainen S, Sievänen H (2012) Effects of high-impact training and detraining on femoral neck structure in premenopausal women: a hip structural analysis of an 18-month randomized controlled exercise intervention with 3.5-year follow-up. Physiother Can 64:98–105

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vainionpää A, Korpelainen R, Sievänen H, Vihriälä E, Leppäluoto J, Jämsä T (2007) Effect of impact exercise and its intensity on bone geometry at weight-bearing tibia and femur. Bone 40:604–611

    Article  PubMed  Google Scholar 

  35. Hamilton CJ, Swan VJ, Jamal SA (2010) The effects of exercise and physical activity participation on bone mass and geometry in postmenopausal women: a systematic review of pQCT studies. Osteoporos Int 21:11–23

    Article  CAS  PubMed  Google Scholar 

  36. Nikander R, Sievänen H, Heinonen A, Kannus P (2005) Femoral neck structure in adult female athletes subjected to different loading modalities. J Bone Miner Res 20:520–528

    Article  PubMed  Google Scholar 

  37. Heinonen A, Sievänen H, Kyröläinen H, Perttunen J, Kannus P (2001) Mineral mass, size, and estimated mechanical strength of triple jumpers' lower limb. Bone 29:279–285

    Article  CAS  PubMed  Google Scholar 

  38. Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37:411–417

    Article  CAS  PubMed  Google Scholar 

  39. Mosley JR, Lanyon LE (1998) Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone 23:313–318

    Article  CAS  PubMed  Google Scholar 

  40. Vainionpää A, Korpelainen R, Vihriälä E, Rinta-Paavola A, Leppäluoto J, Jämsä T (2006) Intensity of exercise is associated with bone density change in premenopausal women. Osteoporos Int 17:455–463

    Article  PubMed  Google Scholar 

  41. Eckstein F, Ateshian G, Burgkart R, Burstein D, Cicuttini F, Dardzinski B, Gray M, Link TM, Majumdar S, Mosher T, Peterfy C, Totterman S, Waterton J, Winalski CS, Felson D (2006) Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. OsteoarthritisCartilage 14:974–983

    CAS  Google Scholar 

  42. Multanen J, Rauvala E, Lammentausta E, Ojala R, Kiviranta I, Häkkinen A, Nieminen MT, Heinonen A (2009) Reproducibility of imaging human knee cartilage by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5 tesla. Osteoarthr Cartil 17:559–564

    Article  CAS  PubMed  Google Scholar 

  43. Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB (1997) Spatial variation of T2 in human articular cartilage. Radiology 205:546–550

    Article  CAS  PubMed  Google Scholar 

  44. Nieminen MT, Töyräs J, Rieppo J, Hakumäki JM, Silvennoinen J, Helminen HJ, Jurvelin JS (2000) Quantitative MR microscopy of enzymatically degraded articular cartilage. Magnetic Resonance in Medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine 43:676–681

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Risto Ojala (Oulu University Hospital) for reading the radiographs, Katriina Ojala, MSc. (UKK Institute, Tampere) for designing and tutoring the exercise programs, and Dr. Katri Lihavainen (University of Jyväskylä) for acting as an exercise instructor in charge. We also thank all the participants for their valuable contribution to the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Multanen.

Ethics declarations

The study protocol was approved by the Ethics Committee of the Central Finland Health Care District (Dnro1E/2008). The protocol conformed to the principles of the Declaration of Helsinki. Informed consent was obtained from all participants.

Conflicts of interest

RA and TJ are the inventors of patent application FI 20090320. Juhani Multanen, Timo Rantalainen, Hannu Kautiainen, Miika T. Nieminen, Eveliina Lammentausta, Arja Häkkinen, Ilkka Kiviranta, and Ari Heinonen declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Multanen, J., Rantalainen, T., Kautiainen, H. et al. Effect of progressive high-impact exercise on femoral neck structural strength in postmenopausal women with mild knee osteoarthritis: a 12-month RCT. Osteoporos Int 28, 1323–1333 (2017). https://doi.org/10.1007/s00198-016-3875-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3875-1

Keywords

Navigation