Skip to main content

Advertisement

Log in

Reference frame access under the effects of great earthquakes: a least squares collocation approach for non-secular post-seismic evolution

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The 2010, (Mw 8.8) Maule, Chile, earthquake produced large co-seismic displacements and non-secular, post-seismic deformation, within latitudes 28\(^{\circ }\)S–40\(^{\circ }\)S extending from the Pacific to the Atlantic oceans. Although these effects are easily resolvable by fitting geodetic extended trajectory models (ETM) to continuous GPS (CGPS) time series, the co- and post-seismic deformation cannot be determined at locations without CGPS (e.g., on passive geodetic benchmarks). To estimate the trajectories of passive geodetic benchmarks, we used CGPS time series to fit an ETM that includes the secular South American plate motion and plate boundary deformation, the co-seismic discontinuity, and the non-secular, logarithmic post-seismic transient produced by the earthquake in the Posiciones Geodésicas Argentinas 2007 (POSGAR07) reference frame (RF). We then used least squares collocation (LSC) to model both the background secular inter-seismic and the non-secular post-seismic components of the ETM at the locations without CGPS. We tested the LSC modeled trajectories using campaign and CGPS data that was not used to generate the model and found standard deviations (95 % confidence level) for position estimates for the north and east components of 3.8 and 5.5 mm, respectively, indicating that the model predicts the post-seismic deformation field very well. Finally, we added the co-seismic displacement field, estimated using an elastic finite element model. The final, trajectory model allows accessing the POSGAR07 RF using post-Maule earthquake coordinates within 5 cm for \(\sim \)91 % of the passive test benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aagaard BT, Knepley MG, Williams CA (2013) A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation. J Geophys Res Solid Earth 118:3059–3079. doi:10.1002/jgrb.50217

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Legrand J et al (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res Solid Earth 112:B09401. doi:10.1029/2007JB004949

    Article  Google Scholar 

  • Bevis M, Brown A (2014) Trajectory models and reference frames for crustal motion geodesy. J Geod 88:283–311. doi:10.1007/s00190-013-0685-5

    Article  Google Scholar 

  • Drewes H (2009) The actual plate kinematic and crustal deformation model APKIM2005 as basis for a non-rotating ITRF. In: Geodetic reference frames. Springer, Berlin, pp 95–99

  • Drewes H, Heidbach O (2012) The 2009 horizontal velocity field for South America and the Caribbean. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for planet earth. Springer, Berlin, pp 657–664

  • Drewes H, Sánchez L (2013) Modelado de deformaciones sísmicas en el mantenimiento de marcos geodésicos de referencia. http://www.sirgas.org/fileadmin/docs/Boletines/Bol18/36_Drewes_Sanchez_2013_Modelado_deformaciones_sismicas.pdf. Accessed 4 January 2014

  • Drewes H, Sánchez L (2014) Actualización del modelo de velocidades SIRGAS. http://www.sirgas.org/fileadmin/docs/Boletines/Bol19/60_Drewes_et_al_2014_ActualizacionVEMOS.pdf. Accessed 2 May 2015

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356

  • Gómez D, Smalley R, Langston C et al (2015) Co-seismic deformation of the 2010 Maule, Chile earthquake: validating a least squares collocation interpolation. GeoActa 40(1), 25–35

  • Hayes GP, Wald DJ, Johnson RL (2012) Slab1. 0: a three-dimensional model of global subduction zone geometries. J Geophys Res Solid Earth 1978–2012: doi:10.1029/2011JB008524

  • Hu Y, Wang K, He J et al (2004) Three-dimensional viscoelastic finite element model for postseismic deformation of the great 1960 Chile earthquake. J Geophys Res Solid Earth 109:B12403. doi:10.1029/2004JB003163

    Article  Google Scholar 

  • Khazaradze G, Wang K, Klotz J et al (2002) Prolonged post-seismic deformation of the 1960 great Chile earthquake and implications for mantle rheology. Geophys Res Lett 29:7–1

    Article  Google Scholar 

  • Ligas M, Kulczycki M (2010) Simple spatial prediction-least squares prediction, simple kriging, and conditional expectation of normal vector. Geod Cartogr 59:69–81

    Google Scholar 

  • Lin YN, Sladen A, Ortega-Culaciati F et al (2013) Coseismic and postseismic slip associated with the 2010 Maule earthquake, Chile: characterizing the Arauco Peninsula barrier effect: characterizing Arauco barrier effect. J Geophys Res Solid Earth 118:3142–3159. doi:10.1002/jgrb.50207

    Article  Google Scholar 

  • Lorito S, Romano F, Atzori S et al (2011) Limited overlap between the seismic gap and coseismic slip of the great 2010 Chile earthquake. Nat Geosci 4:173–177. doi:10.1038/ngeo1073

    Article  Google Scholar 

  • Maerten F (2005) Inverting for slip on three-dimensional fault surfaces using angular dislocations. Bull Seismol Soc Am 95:1654–1665. doi:10.1785/0120030181

    Article  Google Scholar 

  • Moreno M, Melnick D, Rosenau M et al (2012) Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake. Earth Planet Sci Lett 321–322:152–165. doi:10.1016/j.epsl.2012.01.006

    Article  Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154

    Google Scholar 

  • Pollitz FF (1996) Coseismic deformation from earthquake faulting on a layered spherical Earth. Geophys J Int 125:1–14

    Article  Google Scholar 

  • Pollitz FF, Brooks B, Tong X et al (2011) Coseismic slip distribution of the February 27, 2010 Mw 8.8 Maule, Chile earthquake: Chile earthquake coseismic slip. Geophys Res Lett 38. doi:10.1029/2011GL047065

  • Seemüller W, Seitz M, Sánchez L, Drewes H (2009) The position and velocity solution SIR09P01 of the IGS Regional Network Associate Analysis Centre for SIRGAS (IGS RNAAC SIR). Munich Ger Dtsch Geod Forschungsinstitut Rep 85:96

    Google Scholar 

  • Snay RA, Freymueller JT, Pearson C (2013) Crustal motion models developed for version 3.2 of the horizontal time-dependent positioning utility. J Appl Geod. doi:10.1515/jag-2013-0005

  • Tong X, Sandwell D, Luttrell K, et al (2010) The 2010 Maule, Chile earthquake: downdip rupture limit revealed by space geodesy: downdip rupture maule, Chile earthquake. Geophys Res Lett 37. doi:10.1029/2010GL045805

  • Vieira SR, de Carvalho JRP, Ceddia MB, González AP (2010) Detrending non stationary data for geostatistical applications. Bragantia 69:01–08

    Article  Google Scholar 

  • Wang K, Hu Y, Bevis M et al (2007) Crustal motion in the zone of the 1960 Chile earthquake: detangling earthquake-cycle deformation and forearc-sliver translation. Geochem Geophys Geosyst 8:Q10010. doi:10.1029/2007GC001721

    Google Scholar 

  • Wessel P, Smith WH (1998) New, improved version of generic mapping tools released. Eos Trans Am Geophys Union 79:579–579

    Article  Google Scholar 

  • Zweck C, Freymueller JT, Cohen SC (2002) Three-dimensional elastic dislocation modeling of the postseismic response to the 1964 Alaska earthquake. J Geophys Res Solid Earth 1978–2012 107:ECV-1

Download references

Acknowledgments

We thank Hernán Guagni, Agustín Raffo and the Department of Geodesy of the IGN for providing the GPS processing and additional support. We thank Benjamin Brooks and James Foster for providing additional GPS data used in this work and Wolfgang Schwanghart for providing his semi-variogram code through the Matlab File Exchange. The authors would also like to thank three anonymous reviewers for their insightful comments and suggestions that have contributed to improve this paper. This work was supported by the NSF Collaborative Research: Great Earthquakes, Megathrust Phenomenology and Continental Dynamics in the Southern Andes, award number EAR-1118241, and the Center for Earthquake Research and Information, University of Memphis. Data sources Pylith web page: http://geodynamics.org/cig/software/pylith/. Maps were made using the Generic Mapping Tools version 5.1.1 (Wessel and Smith 1998). Additional publicly available time series of CGPS stations located in Chile (and that are not part of CPC-Ar) were obtained from the Nevada Geodetic Laboratory: http://geodesy.unr.edu/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Gómez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez, D.D., Piñón, D.A., Smalley, R. et al. Reference frame access under the effects of great earthquakes: a least squares collocation approach for non-secular post-seismic evolution. J Geod 90, 263–273 (2016). https://doi.org/10.1007/s00190-015-0871-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0871-8

Keywords

Navigation