Skip to main content
Log in

Single-frequency precise point positioning: an analytical approach

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

An analytical approach to single-frequency precise point positioning (PPP) is discussed in this paper. To obtain highest precision results, all biases must be eliminated or modelled to centimetre level. The use of the GRAPHIC ionosphere-free linear combination that is based on single-frequency phase and code observations eliminates the ionosphere bias; however, the rank deficient Gauss–Markov model is obtained. We explicitly determine rank deficiency of a Gauss–Markov model as a number of all ambiguity clusters, each of them defined as a set of all ambiguities overlapping in time. On the basis of S-transformation we prove that the single-frequency PPP represents an unbiased estimator for station coordinates and troposphere parameters, while it presents a biased estimator for ambiguities and receiver-clock error parameters. Additionally we describe the estimable parameters in each ambiguity cluster as the differences between ambiguity parameters and the sum of receiver-clock parameters with one of the ambiguities. We also show that any other particular solution on the basis of S-transformation is obtained only when the common least-squares estimation in single step is applied. The recursive least-squares estimation with parameter pre-elimination only determines the vector of unknowns as possible to transform through S-transformation, whereas the same does not hold for the cofactor matrix of unknowns. For a case study, we present our method on GPS data from 19 permanent stations (14 IGS and 5 EPN) in Europe, for 89 consecutive days in the beginning of 2013. The static case study revealed the precision of daily coordinates as 7.6, 11.7 and 19.6 mm for \(N\), \(E\) and \(U\), respectively. The accuracies of the \(N\), \(E\) and \(U\) components were determined as 6.9, 13.5 and 31.4 mm, respectively, and were calculated using the Helmert transformation of weighted-mean daily single-frequency PPP and IGb08 coordinates. The estimated convergence times were relatively diverse, expanding from 1.75 h (CAGL) to 5.25 h (GRAZ) for the horizontal position with the 10-cm precision threshold, and from 1.00 h (GRAS) to 3.25 h (BZRG) for the height component with a 20-cm precision threshold. The convergence times were shown to be strongly correlated to the remaining unmodelled biases in the GRAPHIC linear combination, primarily with multipath, where the correlation coefficient for the horizontal position was determined as \(\rho _P\) \(=\) 0.68 and for height as \(\rho _U\) \(=\) 0.85. The comparison to the model where raw observations are used (\(C\), \(L\)) and where the ionosphere bias is mitigated with global ionosphere models (GIM) revealed the supremacy of the proposed single-frequency PPP method based on the GRAPHIC linear combination in both the static and the semi-kinematic case study. In the static case study, the proposed single-frequency PPP model was superior both in terms of precision and accuracy. In the semi-kinematic case study, the usage of raw observations with GIM would improve results only when multipath and noise of code observations would prevail over the remaining ionosphere bias, i.e. after applying GIM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amiri-Simkooei A, Teunissen PJG, Tiberius C (2009) Application of least-squares variance component estimation to GPS observables. J Surv Eng 135(4):149–160. doi:10.1061/(ASCE)0733-9453(2009)135:4(149)

    Article  Google Scholar 

  • Ashby N (2003) Relativity in the global positioning system. Living Rev Relativ 6(1). doi:10.12942/lrr-2003-1

  • Baarda W (1973) S-transformations and criterion matrices, Publications on geodesy, vol 5(1). Rijkscommissie voor Geodesie, Delft, The Netherlands

  • Bar-Sever YE, Kröger PM, Borjesson JA (1998) Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J Geophys Res 103(B3):5019–5035. doi:10.1029/97JB03534

    Article  Google Scholar 

  • Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP (2010) Single receiver phase ambiguity resolution with GPS data. J Geod 84(5):327–337. doi:10.1007/s00190-010-0371-9

    Article  Google Scholar 

  • Bilban G (2015) Geoservis, d.o.o, Ljubljana, Slovenia (private communications)

  • Bisnath S, Gao Y (2009) Current state of precise point positioning and future prospects and limitations. In: Sideris MG (ed) Observing our changing earth, International Association of Geodesy Symposia, vol 133. Springer, Berlin, pp 615–623. doi:10.1007/978-3-540-85426-5_71

  • Blewitt G (1990) An automatic editing algorithm for GPS data. Geophys Res Lett 17(3):199–202. doi:10.1029/GL017i003p00199

    Article  Google Scholar 

  • Bona P (2000) Precision, cross correlation, and time correlation of GPS phase and code observations. GPS Solut 4(2):3–13. doi:10.1007/PL00012839

    Article  Google Scholar 

  • Brockmann E (1996) Combination of solutions for geodetic and geodynamic applications of the global positioning system (GPS). Ph.D. thesis, Astronomical Institute University of Berne

  • Bruyninx C, Baire Q, Legrand J, Roosbeek F (2011) The EUREF permanent network (EPN): recent developments and key issues. In: Presented at EUREF 2011 symposium, Chisinau, Republic of Moldova, May 25–28. http://www.epncb.oma.be/_documentation/papers/eurefsymposium2011/euref_permanent_network_recent_developments_and_key_issues

  • Cai C, Liu Z, Luo X (2013) Single-frequency ionosphere-free precise point positioning using combined GPS and GLONASS observations. J Navig 66:417–434. doi:10.1017/S0373463313000039

    Article  Google Scholar 

  • Chen K, Gao Y (2005) Real-time precise point positioning using single frequency data. In: Proceedings of the 18th international technical meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), pp 1514–1523

  • Choy S, Silcock D (2011) Single frequency ionosphere-free precise point positioning: a cross-correlation problem? J Geod Sci 1:286–395. doi:10.2478/v10156-011-0011-1

    Google Scholar 

  • Collins P, Bisnath S, Lahaye F, Héroux P (2010) Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing. J Inst Navig 57(2):123–135

    Article  Google Scholar 

  • Constantin-Octavian A, Chen R, Kuusniemi H, Hernandez-Pajares M, Juan JM, Salazar D (2009) Ionosphere effect mitigation for single-frequency precise point positioning. In: 22nd international meeting of the Satellite Division of The Institute of Navigation, pp 2508–2517

  • Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software, version 5.0. Astronomical Institure University of Bern

  • Dach R, Jean Y (2013) IGS technical report 2012. Tech. rep., Astronomical Institute University of Bern. ftp://igs.org/pub/resource/pubs/2012_techreport.pdf

  • de Lacy MC, Reguzzoni M, Sansò F, Venuti G (2008) The Bayesian detection of discontinuities in a polynomial regression and its application to the cycle-slip problem. J Geod 82(9):527–542. doi:10.1007/s00190-007-0203-8

    Article  Google Scholar 

  • Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Eshagh M (2006) Scalar risk functions as criteria for datum definition of geodetic networks. In: Geomatics 85 conference, National Cartographic Center of Iran, Tehran, Iran. http://www.ncc.org.ir/_DouranPortal/Documents/eshagh-m.pdf, nQC

  • Gelb A (ed) (1974) Applied optimal estimation. MIT Press, Cambridge, MA

    Google Scholar 

  • Geng J, Meng X, Dodson AH, Teferle FN (2010) Integer ambiguity resolution in precise point positioning: method comparison. J Geod 84(9):569–581. doi:10.1007/s00190-010-0399-x

    Article  Google Scholar 

  • Grafarend E, Schaffrin B (1974) Unbiased free net adjustment. Surv Rev 22(171):200–218. doi:10.1179/sre.1974.22.171.200

    Article  Google Scholar 

  • Héroux P, Kouba J (1995) GPS precise point positioning with a difference. In: Geomatics ’95, Ottawa, Ontario, Canada

  • Hofmann-Wellenhof B, Lichtenegger H, Collins J (2001) GPS theory and practice, 5th edn. Springer, Wien

  • Huisman L, Teunissen PJG, Hu C (2012) GNSS precise point positioning in regional reference frames using real-time broadcast corrections. J Appl Geodesy 6(1):15–23. doi:10.1515/jag-2011-0006

    Article  Google Scholar 

  • Kim D, Langley RB (2001) Instantaneous real time cycle-slip correction of dual-frequency GPS data. In: Proceedings of the international symposium on kinematic systems in geodesy, geomatics and navigation. Banff, Alberta, Canada, pp 5–8

  • Koch KR (1999) Parameter estimation and hypothesis testing in linear models. Second, Updated and, Enlarged edn. Springer, Berlin

  • Kouba J (2009) A guide to using International GNSS Service (IGS) products. http://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf

  • Kounias S, Chalikias M (2008) Estimability of parameters in a linear model and related characterizations. Stat Probabil Lett 78(15):2437–2439. doi:10.1016/j.spl.2008.02.019

    Article  Google Scholar 

  • Kozmus Trajkovski K, Sterle O, Stopar B (2010) Sturdy positioning with high sensitivity GPS sensors under adverse conditions. Sensors 10(9):8332–8347

    Article  Google Scholar 

  • Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. J Inst Navig 56(2):135–149

    Article  Google Scholar 

  • Le AQ, Tiberius C (2007) Single-frequency precise point positioning with optimal filtering. GPS Solut 11(1):61–69. doi:10.1007/s10291-006-0033-9

    Article  Google Scholar 

  • Leick A (2004) GPS satellite surveying, 3rd edn. Wiley, Hoboken, NJ

    Google Scholar 

  • Liu X, Tiberius C, de Jong K (2004) Modelling of differential single difference receiver clock bias for precise positioning. GPS Solut 7(4):209–221. doi:10.1007/s10291-003-0079-x

    Article  Google Scholar 

  • Liu Z (2011) A new automated cycle slip detection and repair method for a single dual-frequency GPS receiver. J Geod 85(3):171–183. doi:10.1007/s00190-010-0426-y

    Article  Google Scholar 

  • Meindl M, Schaer S, Hugentobler U, Beutler G (2004) Tropospheric gradient estimation at CODE: results from global solutions. J Meteor Soc Jpn 82(1B):331–338. doi:10.2151/jmsj.2004.331

    Article  Google Scholar 

  • Montenbruck O (2003) Kinematic GPS positioning of LEO satellites using ionosphere-free single frequency measurements. Aerosp Sci Technol 7(5):396–405. doi:10.1016/S1270-9638(03)00034-8

    Article  Google Scholar 

  • Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101:3227–3246. doi:10.1029/95JB03048

    Article  Google Scholar 

  • Odijk D, Teunissen P, Zhang B (2012) Single-frequency integer ambiguity resolution enabled GPS precise point positioning. J Surv Eng 138(4):193–202. doi:10.1061/(ASCE)SU.1943-5428.0000085

    Article  Google Scholar 

  • Odijk D, Teunissen PJG, Khodabandeh A (2014) Single-frequency PPP-RTK: theory and experimental results. In: Rizos C, Willis P (eds) Earth on the Edge: science for a sustainable planet, International Association of Geodesy Symposia, vol 139. Springer, Berlin, pp 571–578. doi:10.1007/978-3-642-37222-3_75

  • Øvstedal O (2002) Absolute positioning with single-frequency GPS receivers. GPS Solut 5(4):33–44. doi:10.1007/PL00012910

    Article  Google Scholar 

  • Papo HB (2003) Datum accuracy and its dependence on network geometry*. In: Grafarend EW, Krumm FW, Schwarze VS (eds) Geodesy-the challenge of the 3rd millennium. Springer, Berlin, pp 379–386. doi:10.1007/978-3-662-05296-9_39

  • Petit G, Luzum B (2010) IERS technical note no. 36. Tech. rep., IERS Convention Centre. http://www.iers.org/SharedDocs/Publikationen/EN/IERS/Publications/tn/TechnNote36/tn36.pdf?&v=1

  • Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494. doi:10.1007/s10291-011-0248-2

    Article  Google Scholar 

  • Remondi BW (1984) Using the global positioning system (GPS) phase observable for relative geodesy: modelling, processing, and results. Ph.D. thesis, University of Texas at Austin

  • Schaer S (1999) Mapping and predicting the earth’s ionosphere using the global positioning system. Ph.D. thesis, Astronomical Institute University of Berne

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798. doi:10.1007/s00190-007-0148-y

    Article  Google Scholar 

  • Schönemann E, Becker M, Springer T (2011) A new approach for GNSS analysis in a multi-GNSS and multi-signal environment. J Geod Sci 1(3):204–214. doi:10.2478/v10156-010-0023-2

    Google Scholar 

  • Sharma S, Dashora N, Galav P, Pandey R (2011) Cycle slip detection, correction and phase leveling of RINEX formatted GPS observables. Curr Sci 100(2):205–212

    Google Scholar 

  • Strang G, Borre K (1997) Linear algebra, geodesy, and GPS. Wellesley-Cambridge Press, Wellesley, MA

    Google Scholar 

  • Teunissen PJG (1985) Zero order design: generalized inverses, adjustment, the datum problem and S-transformations. In: Grafarend EW, Sanso F (eds) Optimization and design of geodetic networks. Springer, Berlin, pp 11–55. doi:10.1007/978-3-642-70659-2_3

  • Teunissen PJG (1991) The GPS phase-adjusted pseudorange. In: Proceedings of the 2nd international workshop on high precision navigation Stuttgart/Freudenstadt, Germany, pp 115–125

  • Teunissen PJG (2006) Network quality control. Series on mathematical geodesy and positioning. VSSD, Delft, NL

  • Teunissen PJG, de Bakker PF (2013) Single-receiver single-channel multi-frequency GNSS integrity: outliers, slips, and ionospheric disturbances. J Geod 87(2):161–177. doi:10.1007/s00190-012-0588-x

    Article  Google Scholar 

  • Teunissen PJG, Kleusberg A (1998) GPS observation equations and positioning concepts. In: Kleusberg A, Teunissen PJG (eds) GPS for geodesy. Springer, Berlin, pp 187–230

    Chapter  Google Scholar 

  • van Bree RJP, Tiberius CCJM (2012) Real-time single-frequency precise point positioning: accuracy assessment. GPS Solut 16(2):259–266. doi:10.1007/s10291-011-0228-6

    Article  Google Scholar 

  • Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013) Generic mapping tools: improved version released. EOS Trans AGU 94(45):409–410. doi:10.1002/2013EO450001

    Article  Google Scholar 

  • Yunck TP (1993) Coping with the atmosphere and ionosphere in precise satellite and ground positioning. In: Vallance-Jones A (ed) Environmental effects on spacecraft positioning and trajectories, geophysical monograph, vol 73. IUGG, pp 1–16

  • Zhalilo AA (2003) Carrier-phase cycle-slip detection and repair of dual-frequency GPS data-new technique using correlation filtering principle. In: Proceedings of 10th Saint Petersburg International Conference on Integrated Navigation Systems. St. Petersburg, Russia, pp 26–28

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017. doi:10.1029/96JB03860

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oskar Sterle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterle, O., Stopar, B. & Pavlovčič Prešeren, P. Single-frequency precise point positioning: an analytical approach. J Geod 89, 793–810 (2015). https://doi.org/10.1007/s00190-015-0816-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0816-2

Keywords

Navigation