Skip to main content
Log in

Dynamic price dispersion in Bertrand–Edgeworth competition

  • Published:
International Journal of Game Theory Aims and scope Submit manuscript

Abstract

This paper studies a dynamic oligopoly model of price competition under demand uncertainty. Sellers are endowed with one unit of the good and compete by posting prices in every period. Buyers each demand one unit of the good and have a common reservation price. They have full information regarding the prices posted by each firm in the market; hence, search is costless. The number of buyers coming to the market in each period is random. Demand uncertainty is said to be high if there are at least two non-zero demand states that give a seller different option values of waiting to sell. Our model features a unique symmetric Markov perfect equilibrium in which price dispersion prevails if and only if the degree of demand uncertainty is high. Several testable theoretical implications on the distribution of market prices are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Burdett and Judd (1983) demonstrated that ex ante heterogeneity is not necessary to explain the appearance of price dispersion. They constructed a price dispersion equilibrium in which some consumers search once and others search twice. Price dispersion equilibria, however, cannot be sustained if search is costless.

  2. Baye and Morgan (2004) showed that price dispersion occurs in epsilon and quantal response equilibria in a homogeneous product market where the uniform price Nash equilibrium is predicted in Bertrand competition. Statistical tests of two laboratory experiment data sets support the bounded rationality hypothesis and the pattern of price dispersion derived from it.

  3. Equilibrium price dispersion under perfect competition with demand uncertainty was first introduced by Prescott (1975) in his well-known ”hotel model”. Dana (1999) extended Prescott’s model to monopoly and imperfect competition.

  4. Hong et al. (2002) Extended Varian’s model into a dynamic setup to study the effects of consumer inventories.

  5. We may introduce an additional period, \(t=0,\) in which sellers choose whether or not to produce one unit of output at a common cost of \(c>0\). The extended model allows us to study the markets that feature production in advance.

  6. Due to the complexity of solving simultaneously the intertemporal decision making problems of sellers and buyers, the literature commonly assumes that buyers cannot optimize the timing of purchase. Deneckere and Peck (2012) presented the first dynamic model of perfectly competitive price posting under demand uncertainty in which consumers are allowed to fully optimize the timing of purchase decisions.

    Very little research provides empirical evidence on whether consumers are forward-looking and strategically time their purchases. Utilizing two separate datasets from the air-travel industry (posted fare data and booking data), Li et al. (2014) studied strategic consumer purchase behavior using a structural model. They found that on average the fraction of strategic consumers across different city-pair markets in the population is relatively small at about 12 %.

  7. This is an innocuous assumption. Our results hold for any non-degenerate tie-breaking rules.

  8. For example, when we checked the textbook “Probability and Measure” by Patrick Billingsley at Amazon.com, we found 12 sellers offering to sell a copy of the book with condition “New” and the posted prices ranged from around $142 all the way up to $900. The lowest two prices were pretty close at $142.9 and $144.95 respectively. For another textbook “Microeconomic Theory” (Hardcover) by Mas-Colell et al. there were 53 offers ranging from $112.99 to $322, and the lowest three prices were $112.99, $112.99, and $113.71.

  9. For example, see Baye and Morgan (2004), Cason and Friedman (2003), and Morgan et al. (2006).

  10. Propositions 4 and 5 do not rule out the possibility of asymmetric mixed strategy equilibria.

  11. \(\left\lceil x\right\rceil \) is the smallest integer not less than x. Note here \(\left\lceil \frac{\underline{i}}{\overline{i}-\underline{i}} \right\rceil \overline{i}\) is a lower bound but not the greatest lower bound for the inequality to hold.

  12. I would like to thank an Associate Editor and a referee for pointing out this interesting link.

  13. \(F(p-)\) stands for the left limit of F at \(p:F(p-)=\lim _{x \rightarrow p-}F(x).\)

  14. Recall that \(\underline{i}=\min \{i|q_{i}>0,\) \(i=1,\ldots ,n-1,n+\}\) and \( \overline{i}=\max \{i|q_{i}>0,\) \(i=1,\ldots ,n-1,n+\}.\)

References

  • Bailey J (1998) Intermediation and electronic markets: aggregation and pricing in internet commerce. Doctoral Dissertation, MIT, Cambridge, MA

  • Baye MR, Morgan J (2004) Price dispersion in the lab and on the internet: theory and evidence. Rand J Econ 35:449–466

    Article  Google Scholar 

  • Baye MR, Morgan J, Scholten P (2006) Information, search, and price dispersion. Handbook on economics and information systems. Elsevier, Armsterdam

    Google Scholar 

  • Brynjolfsson E, Smith M (2000) Frictionless commerce? A comparison of internet and conventional retailers. Manag Sci 46:563–585

    Article  Google Scholar 

  • Burdett K, Judd KL (1983) Equilibrium price dispersion. Econometrica 51:955–970

    Article  Google Scholar 

  • Cason T, Friedman D (2003) Buyer search and price dispersion: a laboratory study. J Econ Theory 112:232–260

    Article  Google Scholar 

  • Dana JD Jr (1999) Equilibrium price dispersion under demand uncertainty: the roles of market structure and costly capacity. Rand J Econ 30:632–660

    Article  Google Scholar 

  • Dasgupta P, Maskin E (1986) The existence of equilibrium in discontinuous economic games I: theory. Rev Econ Stud 53:1–26

    Article  Google Scholar 

  • Deneckere R, Peck J (2012) Dynamic competition with random demand and costless search: a theory of price posting. Econometrica 80:1185–1247

    Article  Google Scholar 

  • Dixon H (1984) The existence of mixed-strategy equilibrium in a price-setting oligopoly with convex costs. Econ Lett 16:205–212

    Article  Google Scholar 

  • Dudey M (1992) Dynamic Edgeworth–Bertrand competition. Q J Econ 107:1461–1477

    Article  Google Scholar 

  • Eden B (1990) Marginal cost pricing when spot markets are complete. J Polit Econ 98:1293–1306

    Article  Google Scholar 

  • Edgeworth FY (1925) The pure theory of monopoly, in collected papers, vol 1. Macmillan, London

    Google Scholar 

  • Hong P, McAfee P, Nayyar A (2002) Equilibrium price dispersion with consumer inventories. J Econ Theory 105:503–517

    Article  Google Scholar 

  • Janssen M, Moraga JL (2004) Strategic pricing, consumer search and the number of firms. Rev Econ Stud 71:1089–1118

    Article  Google Scholar 

  • Keller G, Rady S (2003) Price dispersion and learning in a dynamic differentiated-goods duopoly. Rand J Econ 34:138–165

    Article  Google Scholar 

  • Levitan R, Shubik M (1972) Price duopoly and capacity constraints. Int Econ Rev 13:111–122

    Article  Google Scholar 

  • Li J, Granados N, Netessine S (2014) Are consumers strategic? Structural estimation from the air-travel industry. Manag Sci 60:2114–2137

    Article  Google Scholar 

  • Milyo J, Waldfogel J (1999) The effect of price advertising on prices: evidence in the wake of 44 liquormart. Am Econ Rev 89:1081–1096

    Article  Google Scholar 

  • Morgan J, Orzen H, Sefton M (2006) An experimental study of price dispersion. Games Econ Behav 54:134–158

    Article  Google Scholar 

  • Nichol A (1935) Edgeworth’s theory of duopoly price. Econ J 45:51–66

    Article  Google Scholar 

  • Prescott EC (1975) Efficiency of the natural rate. J Polit Econ 83:1229–1236

    Article  Google Scholar 

  • Reinganum JF (1979) A simple model of equilibrium price dispersion. J Polit Econ 87:851–858

    Article  Google Scholar 

  • Rosenthal RW (1980) A model in which an increase in the number of sellers leads to a higher price. Econometrica 48:1574–1579

    Google Scholar 

  • Rothschild M (1974) Searching for the lowest price when the distribution of prices is unknown. J Polit Econ 82(4):689–711

    Article  Google Scholar 

  • Salop S, Stiglitz J (1976) Bargains and Ripoffs: a model of monopolistically competitive prices. Rev Econ Stud 44:493–510

    Article  Google Scholar 

  • Stigler GJ (1961) The economics of information. J Polit Econ 69:213–225

    Article  Google Scholar 

  • Varian HR (1980) A model of sales. Am Econ Rev 70:651–659

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-jen Sun.

Additional information

I am grateful to James Peck, Huanxing Yang and Lixin Ye for helpful suggestions. I would also like to thank an anonymous Associate Editor and two anonymous referees for their insightful comments and suggestions. All remaining errors are my own.

Appendix

Appendix

Proof of Proposition  1

Pick any period \(t\in \mathbb {N} .\) If in period t there is only one seller remaining in the market, then the seller will simply set a price \(p=\overline{p}=p_{1}^{*}\) in every period. Suppose there are two sellers in the market in period t. Let \( F_{i}(p):[0,\infty )\rightarrow [0,1]\) denote the strategy played by seller i in period t (\(F_{i}(p)\) could be degenerate) in an equilibrium, \( i=1,2\). Define \(l_{i}=\sup \{p:F_{i}(p)=0\}\) and \(u_{i}=\inf \{p:F_{i}(p)=1\}.\) Define \(V_{i}(t)\) to be the present discounted value of seller \(i^{\prime }s\) expected profit in period t. Conditional on demand being zero in period t (no buyer shows up in period t), \( V_{i}(t+1)=V_{i}(t)\). We prove the proposition by establishing the following claims:

Claim 1. \(l_{1}=l_{2}\ge p_{2}^{*}\): Suppose \(l_{1}\ne l_{2}\) and WLOG let \(l_{1}<l_{2}.\) Seller 1 can increase his profit by putting all probability between \([l_{1},l_{2})\) to \(l_{2}-\varepsilon .\) Hence in any equilibrium we must have \(l_{1}=l_{2}.\) Suppose now we have \( l_{1}=l_{2}<p_{2}^{*}.\) Consider two cases:

Case i. \(F_{2}(l_{2})<1.\) Since a distribution is right continuous, \(\exists \) \(\eta \in (l_{2},p_{2}^{*})\) such that \(F_{2}(l_{2})\le F_{2}(p)<1\) \( \forall \) \(p\in (l_{2},\eta ).\) Given seller 2’s equilibrium strategy, seller 1’s expected profit from setting a price \(p\in [l_{2},\eta )\) is strictly lower than that from posting the price at \(p=p_{2}^{*}\):Footnote 13

$$\begin{aligned} V_{1}(t)&=q\delta V_{1}(t)+(1-q)\left[ \phantom {\left. +(F_{2}(p)-F_{2}(p-))\left( \frac{1}{2}\delta V(\overline{p},1)+\frac{1}{2} p\right) +(1-F_{2}(p))p\right] }F_{2}(p-)\delta V(\overline{p} ,1)\right. \nonumber \\&\left. +\,(F_{2}(p)-F_{2}(p-))\left( \frac{1}{2}\delta V(\overline{p},1)+\frac{1}{2} p\right) +(1-F_{2}(p))p\right] \nonumber \\&<q\delta V_{1}(t)+(1-q)\left[ \phantom {\left. +(F_{2}(p)-F_{2}(p-))\delta V(\overline{p},1)+(1-F_{2}(p))\delta V(\overline{p},1)\right] }F_{2}(p-)\delta V(\overline{p} ,1)\right. \nonumber \\&\left. +\,(F_{2}(p)-F_{2}(p-))\delta V(\overline{p},1)+(1-F_{2}(p))\delta V(\overline{p},1)\right] \nonumber \\&=q\delta V_{1}(t)+(1-q)\left[ F_{2}(p_{2}^{*}-)\delta V(\overline{p} ,1)\right. \nonumber \\&\left. +\,(F_{2}(p_{2}^{*})-F_{2}(p_{2}^{*}-))\frac{1}{2}(\delta V(\overline{p},1)+p_{2}^{*}) \right. \nonumber \\&\left. +\,(1-F_{2}(p_{2}^{*}))p_{2}^{*}\right] \end{aligned}$$
(19)

Here we use the fact that \(p_{2}^{*}=\delta V(\overline{p},1)>\eta >p.\) Consequently, seller 1 will not post any price \(p\in [l_{2},\eta )\) with positive probability,  and we have \(l_{1}=\sup \{p:F_{1}(p)=0\}\ge \eta ,\) which contradicts the premise that \(l_{1}=l_{2}<\eta \).

Case ii. \(F_{2}(l_{2})=1.\) \(F_{2}(l_{2})=1\) indicates that seller 2 sets the price at \(l_{2}\) with probability 1. Given seller 1’s equilibrium strategy, seller 2’s expected profit from posting the price at \(p=l_{2}\) is strictly lower than that from posting the price at \(p=p_{2}^{*}:\)

$$\begin{aligned} V_{2}(t)= & {} q\delta V_{2}(t)+(1-q)\left[ F_{1}(l_{2})\left[ \frac{1}{2}\delta V( \overline{p},1)+\frac{1}{2}l_{2}\right] +(1-F_{1}(l_{2}))l_{2}\right] \nonumber \\< & {} q\delta V_{2}(t)+(1-q)\delta V(\overline{p},1) \nonumber \\= & {} q\delta V_{2}(t)+(1-q)\left[ F_{1}(p_{2}^{*}-)\delta V(\overline{p} ,1)\right. \nonumber \\&\left. +\,(F_{1}(p_{2}^{*})-F_{1}(p_{2}^{*}-))\frac{1}{2}(\delta V( \overline{p},1)+p_{2}^{*}) \right. \nonumber \\&\left. +\,(1-F_{1}(p_{2}^{*}))p_{2}^{*}\right] , \end{aligned}$$
(20)

hence a contradiction is reached.

We have shown that both cases are not feasible. Thus in an equilibrium we must have \(l_{1}=l_{2}\ge p_{2}^{*}.\)

Claim 2. \(u_{1}=u_{2}=p_{2}^{*}\): Suppose \(u_{1}\ne u_{2}\) and WLOG let \(u_{1}<u_{2}.\) By Claim 1, \(p_{2}^{*}\le u_{1}<u_{2}.\) First, we observe that \(p_{2}^{*}<u_{1}<u_{2}\) cannot be supported by any equilibrium, for if it is indeed the case, then seller 2’s expected profit from posting any price \(p\in (p_{2}^{*},u_{1})\) is greater than that from posting any price \(p>u_{1},\) \(i.e.,\forall \) \(p\in (p_{2}^{*},u_{1}) \)

$$\begin{aligned} V_{2}(t)= & {} q\delta V_{2}(t)+(1-q)\left[ \phantom {\left. +(F_{1}(p)-F_{1}(p-))\left( \frac{1}{2}\delta V(\overline{p},1)+\frac{1}{2} p\right) +(1-F_{1}(p))p\right] }F_{1}(p-)\delta V(\overline{p} ,1)\right. \nonumber \\&\left. +\,(F_{1}(p)-F_{1}(p-))\left( \frac{1}{2}\delta V(\overline{p},1)+\frac{1}{2} p\right) +(1-F_{1}(p))p\right] \nonumber \\> & {} q\delta V_{2}(t)+(1-q)[F_{1}(p-)\delta V(\overline{p} ,1)\nonumber \\&+\,(F_{1}(p)-F_{1}(p-))\delta V(\overline{p},1)+(1-F_{1}(p))\delta V( \overline{p},1)] \nonumber \\= & {} q\delta V_{2}(t)+(1-q)\delta V(\overline{p},1), \end{aligned}$$
(21)

which implies \(\inf \{p:F_{2}(p)=1\}\le u_{1},\) a contradiction. On the other hand, \(p_{2}^{*}=u_{1}<u_{2}\) also cannot be sustained in any equilibrium, for seller 1’s expected profit from posting any price \(p\in (p_{2}^{*},u_{2})\) is greater than that from posting any price \(p\le p_{2}^{*},\) i.e., \(\forall \) \(p\in (p_{2}^{*},u_{2})\)

$$\begin{aligned} V_{1}(t)&=q\delta V_{1}(t)+(1-q)\left[ \phantom {\left. \left( \frac{1}{2}\delta V(\overline{p},1)+\frac{1}{2} p\right) +(1-F_{2}(p))p\right] }F_{2}(p-)\delta V(\overline{p} ,1)+(F_{2}(p)-F_{2}(p-))\right. \nonumber \\&\quad \left. \left( \frac{1}{2}\delta V(\overline{p},1)+\frac{1}{2} p\right) +(1-F_{2}(p))p\right] \nonumber \\&>q\delta V_{1}(t)+(1-q)\delta V(\overline{p},1), \end{aligned}$$
(22)

which implies that \(F_{1}(p_{2}^{*})=0,\) violating the premise that \( u_{1}=\inf \{p:F_{1}(p)=1\}=p_{2}^{*}.\) Therefore we have shown that \( u_{1}=u_{2}\) in any equilibrium.

Now suppose \(u_{1}=u_{2}>p_{2}^{*}.\) Combining the result from Claim 1, there are two possible cases to be considered:

Case i. \(u_{1}=u_{2}>l_{1}=l_{2}=p_{2}^{*}.\) As \(u_{2}>l_{2}=p_{2}^{*},\) there exists \(\xi \in (p_{2}^{*},u_{2})\) such that \(F_{2}(\xi )<1.\) Seller 1’s expected profit from posting a price \(p\le \xi \) is

$$\begin{aligned} V_{1}(t)= & {} q\delta V_{1}(t)+(1-q)\left[ \phantom {\left. +(F_{2}(p)-F_{2}(p-))\frac{1}{2}(\delta V(\overline{p} ,1)+p)+(1-F_{2}(p))p\right] .}F_{2}(p-)\delta V(\overline{p} ,1)\right. \nonumber \\&\left. +(F_{2}(p)-F_{2}(p-))\frac{1}{2}(\delta V(\overline{p} ,1)+p)+(1-F_{2}(p))p\right] . \end{aligned}$$
(23)

It can be readily seen that \(V_{1}(t)=p_{2}^{*}=\delta V(\overline{p},1)\) when \(p=p_{2}^{*},\) and \(\lim _{p\rightarrow p_{2}^{*}}V_{1}(t)=p_{2}^{*}=\delta V(\overline{p},1).\) On the other hand, the expected profit from posting a price \(p=\xi \) is

$$\begin{aligned} V_{1}(t)= & {} q\delta V_{1}(t)+(1-q)\left[ \phantom {\left. -F_{2}(\xi -))\left( \frac{1}{2}\delta V(\overline{p},1)+\frac{1}{2 }\xi \right) +(1-F_{2}(\xi ))\xi \right] }F_{2}(\xi -)\delta V(\overline{p} ,1)+(F_{2}(\xi )\right. \nonumber \\&\left. -F_{2}(\xi -))\left( \frac{1}{2}\delta V(\overline{p},1)+\frac{1}{2 }\xi \right) +(1-F_{2}(\xi ))\xi \right] \nonumber \\> & {} q\delta V_{1}(t)+(1-q)\left[ F_{2}(\xi -)\delta V(\overline{p},1)\right. \nonumber \\&\left. +\,(F_{2}(\xi )-F_{2}(\xi -))\delta V(\overline{p},1)+(1-F_{2}(\xi ))\delta V(\overline{p} ,1)\right] \nonumber \\= & {} \delta V(\overline{p},1). \end{aligned}$$
(24)

Hence, we can find an \(\epsilon >0\) such that seller 1’s expected profit at \( p=\xi \) is strictly higher than that from posting any price \(p\in [p_{2}^{*},p_{2}^{*}+\epsilon ).\) Accordingly, given seller 2’s strategy \(F_{2}(\bullet ),\) seller 1 will never choose any \(p<p_{2}^{*}+\epsilon \). Therefore \(\sup \{p:F_{1}(p)=0\}\ge p_{2}^{*}+\epsilon >p_{2}^{*},\) contradicting the premise that \(l_{1}=p_{2}^{*}.\)

Case ii. \(u_{1}=u_{2}\ge l_{1}=l_{2}>p_{2}^{*}.\) If \(F_{2}(u_{2}-)=1,\) then there exists \(p_{2}^{*}<\vartheta <u_{2}\) such that \( F_{2}(p-)>1-\varepsilon \) \(\forall p\in (\vartheta ,u_{2}],\) where \( \varepsilon =(l_{1}-p_{2}^{*})/(\delta V(\overline{p},1)/2+3u_{2}/2).\) Then seller 1’s expected profit from posting any price \(p\in (\vartheta ,u_{2}]\) is

$$\begin{aligned} V_{1}(t)= & {} q\delta V_{1}(t)+(1-q)\left[ \phantom {\left. -F_{2}(p-))\frac{1}{2}(\delta V(\overline{p} ,1)+p)+(1-F_{2}(p))p\right] }F_{2}(p-)\delta V(\overline{p} ,1)+(F_{2}(p)\right. \nonumber \\&\left. -F_{2}(p-))\frac{1}{2}(\delta V(\overline{p} ,1)+p)+(1-F_{2}(p))p\right] \nonumber \\< & {} q\delta V_{1}(t)+(1-q)[F_{2}(p-)\delta V(\overline{p},1)+\frac{ \varepsilon }{2}(\delta V(\overline{p},1)+p)+\varepsilon p] \nonumber \\\le & {} q\delta V_{1}(t)+(1-q)\left[ \delta V(\overline{p},1)+\varepsilon \left( \frac{1}{ 2}\delta V(\overline{p},1)+\frac{3}{2}p\right) \right] \nonumber \\\le & {} q\delta V_{1}(t)+(1-q)\left[ \delta V(\overline{p},1)+\varepsilon \left( \frac{1}{ 2}\delta V(\overline{p},1)+\frac{3}{2}u_{2}\right) \right] \nonumber \\= & {} q\delta V_{1}(t)+(1-q)l_{1}. \end{aligned}$$
(25)

By choosing the price sufficiently close to \(l_{1},\) seller 1’s expected profit can be sufficiently close to \(q\delta V_{1}(t)+(1-q)l_{1},\) the last term in the equation above. Therefore seller 1 will never choose a price above \(\vartheta \) with positive probability,  which implies that \(\inf \{p:F_{1}(p)=1\}\le \vartheta <u_{2}=u_{1},\) a contradiction. Hence in equilibrium we must have \(F_{2}(u_{2}-)<1\). Since \(u_{2}=\inf \{p:F_{2}(p)=1\},\) \(F_{2}(u_{2})-F_{2}(u_{2}-)>0.\) It is then easy to check that seller 1 will never set the price at \(u_{1},\) as he can always get higher profit by cutting down the price slightly. Since \(u_{1}=\inf \{p:F_{1}(p)=1\},\) this implies that \(F_{1}(u_{1}-)=1.\) But, by the same token, \(F_{1}(u_{1}-)=1\) also cannot be sustained in any equilibrium. Thus a necessary condition in an equilibrium is that \( u_{1}=u_{2}=l_{1}=l_{2}=p_{2}^{*},\) and it is easy to verify that it is indeed an equilibrium. \(\square \)

Proof of Proposition  2

Since most of the reasoning are parallel to the proof in Proposition 1, here we just give a sketch of the proof. When \( N=2\), the conclusion follows from Proposition 1. The proof proceeds by induction. Suppose the Proposition holds in the selling game \(\Gamma (N-1,q). \) For the selling game \(\Gamma (N,q),\) pick any period t with \( S_{t}=N\) and WLOG let \(l_{1t}\le l_{2t}\le \cdots \le l_{Nt}.\) Following the same line of reasoning in Claim 1 of Proposition 1, it can be readily verified that \(l_{1t}=l_{2t}\ge p_{N}^{*}\) and (a) is established. For part (b), let us define \(V_{i}(t)\) to be the present discount value of expected profit to the seller i at period t, and \(F_{-i}(p)\) to be the joint probability that all sellers except i set the price less or equal to p. Clearly \(F_{-i}(p) \) is right continuous. Now we notice that \( l_{1t}=l_{2t}>p_{N}^{*}\) cannot be sustained in any equilibrium. If it were indeed the case, then the expected profit for seller 1 from posting the price at \(l_{1t}\) would be

$$\begin{aligned} V_{1}(t)=q\delta V_{1}(t)+(1-q)\left[ F_{-1}(l_{1t})\frac{1}{2}(\delta V(\overline{ p},N-1)+l_{1t})+(1-F_{-1}(l_{1t}))l_{1t}\right] . \end{aligned}$$
(26)

Observing that \(F_{-1}(l_{1t})>0\) cannot be the case, as it implies that

$$\begin{aligned} V_{1}(t)\rightarrow & {} q\delta V_{1}(t)+(1-q)\left[ F_{-1}(l_{1t})\frac{1}{2} (\delta V(\overline{p},N-1)+l_{1t})+(1-F_{-1}(l_{1t}))l_{1t}\right] \nonumber \\< & {} q\delta V_{1}(t)+(1-q)l_{1t}\text { as }p\searrow l_{1t}\text { }, \end{aligned}$$
(27)

which implies that either a maximizer does not exist for seller 1 or \(\sup \{p:F_{1t}(p)=0\}>l_{1t},\) a contradiction. But \(F_{-1}(l_{1t})\) also cannot be equal to zero. \(F_{-1}(l_{1t})=0\) implies that conditional on demand being one in period t, the expected profit for every seller is at least \( l_{it},\) which in turn implies that \(u_{1t}=u_{2t}=\cdots =u_{Nt}\) and \( F_{it}(u_{it}-)=1\) \(\forall i.\) Also by the right continuity of \(F_{-1}(p),\) \(F_{it}\) must be non-degenerate for some i. It is easy to see that it cannot be supported in any equilibrium. Consequently \(l_{1t}=l_{2t}=p_{N}^{ *}\) is the only feasible outcome. Suppose now that none of the (N-1) sellers chooses \(p_{N}^{*}\) with probability 1, then \(F_{-1}(p_{N}^{*})<1\) and right continuity again implies that in order to maximize the expected profit, seller 1 will set a price strictly greater than \( p_{N}^{*},\) violating the condition \(l_{1t}=p_{N}^{*}.\) there has at least one seller, say j, who sets the price at \(p_{N}^{*}\) with probability 1. From seller j’s perspective, by the same reasoning, there must have another seller who posts the price at \(p_{N}^{*}\) with probability 1. Hence (b) is established. (c) follows from (a) and (b) immediately. \(\square \)

Proof of Proposition  2

The case \(S_{t}=1\) is trivial. Pick any period \(t\in \mathbb {N} \) with \(S_{t}=2.\) It is easy to show that a pure-strategy equilibrium does not exist in the selling game \(\Gamma (2,\{q_{i}\}_{i=0}^{\infty })\) when \( q_{1}>0\) and \(\sum _{i=2}^{\infty }q_{i}>0\). Now we show that a symmetric mixed-strategy equilibrium exists. Let \(F(p):[0,\infty )\rightarrow [0,1]\) denote the mixed-strategy played by each seller in period t in an equilibrium, and we define \(l=\sup \{p:F(p)=0\}\) and \(u=\inf \{p:F(p)=1\}.\) Following the same line of reasoning in the proof of Proposition 1, it can be established that F(p) is continuous (atomless) and strictly increasing on [lu] (i.e., the support of F(p) is connected). Define \(V_{i}(t)\) to be the present discounted value of seller \(i^{\prime }s\) expected profit in period t. Apparently we must have \(u=\overline{p}.\) Suppose to the contrary that \(u<\overline{p},\) then the expected profit for seller 1 from posting a price \(\overline{p}\) is greater than that from posting a price u,  i.e.,

$$\begin{aligned} V_{1}(t)=q_{0}\delta V_{1}(t)+q_{1}\delta V(\overline{p},1)+\sum _{j=2}^{ \infty }q_{j}\overline{p}>q_{0}\delta V_{1}(t)+q_{1}\delta V(\overline{p} ,1)+\sum _{j=2}^{\infty }q_{j}u, \end{aligned}$$
(28)

a contradiction. Since each seller is indifferent between posting a price at \(u=\overline{p}\) and posting a price at l,  we must have \(l=p_{2}^{*}\) according to the definition of \(p_{2}^{*}.\) Then \(\forall p\in [p_{2}^{*},\overline{p}]\) the following relation holds:

$$\begin{aligned} (1-\delta q_{0})V(\overline{p},2)=q_{1}[F(p)\delta V(\overline{p} ,1)+(1-F(p))p]+\sum _{i=2}^{\infty }q_{i}p\text { } \end{aligned}$$
(29)

F(p) can be solved as:

$$\begin{aligned} F(p)=\left\{ \begin{array}{ll} 1 &{}\quad p>\overline{p} \\ 1-\frac{\sum _{2}^{\infty }q_{i}}{q_{1}}\left[ \frac{\overline{p}-\delta V( \overline{p},1)}{p-\delta V(\overline{p},1)}-1\right] &{}\quad p_{2}^{*}\le p\le \overline{p} \\ 0 &{}\quad p<p_{2}^{*} \end{array} \right. , \end{aligned}$$
(30)

which is exactly equal to \(W_{2}(p).\) \(\square \)

Proof of Proposition  5

Pick any period \(t\in \mathbb {N} \) with \(S_{t}=n.\) Let \(F_{n}(p):[0,\infty )\rightarrow [0,1]\) denote the mixed-strategy played by each seller in period t in an equilibrium. We divide the proof into two steps:

Step 1: No price dispersion when sellers face low demand uncertainty

First we provide a necessary and sufficient condition for the unique existence of symmetric pure-strategy equilibrium. Suppose \((p^{*},\ldots ,p^{*})\) constitutes a symmetric pure-strategy equilibrium in period t. Define \(\widehat{V}(k)\) to be the present discounted value of a seller’s expected profit when there are k sellers in the market. Clearly \( \widehat{V}(1)=V(\overline{p},1),\) and \(\widehat{V}(2)=V(\overline{p},2)\) from Propositions 2 and 4. By induction, we claim that \(\widehat{V}(k)=V( \overline{p},k)\) for every \(k\in \mathbb {N} \) in equilibrium, and the claim is verified along the proof. Given \((p^{*},\ldots ,p^{*})\) is an equilibrium, the following two conditions should be satisfied:

(a) No seller has an incentive to slightly undercut its competitors. This condition requires that

$$\begin{aligned}&q_{0}\delta V(\overline{p},n)+q_{1}\left( \frac{1}{n}p^{*}+\left( 1-\frac{1}{n} \right) \delta V(\overline{p},n-1)\right) \nonumber \\&\qquad +\cdots +q_{n-1}\left( \frac{n-1}{n}p^{*}+\frac{1}{n}\delta V(\overline{p} ,1)\right) +\sum _{i=n}^{\infty }q_{i}p^{*}\\&\ge q_{0}\delta V(\overline{p} ,n)+\sum _{i=1}^{\infty }q_{i}p^{*} \nonumber \\&\quad \Longrightarrow p^{*} \le \frac{\sum _{i=1}^{n-1}q_{i}(1-\frac{i}{n} )\delta V(\overline{p},n-i)}{\sum _{i=1}^{n-1}q_{i}(1-\frac{i}{n})} \nonumber \end{aligned}$$
(31)

(b) No seller has an incentive to raise its price to \(\overline{p}.\) This condition requires that

$$\begin{aligned}&q_{0}\delta V(\overline{p},n)+q_{1}\left( \frac{1}{n}p^{*}+\left( 1-\frac{1}{n} \right) \delta V(\overline{p},n-1)\right) \nonumber \\&\qquad +\cdots +q_{n-1}\left( \frac{n-1}{n}p^{*}+\frac{1}{n}\delta V(\overline{p} ,1)\right) +\sum _{i=n}^{\infty }q_{i}p^{*}\\&\quad \ge q_{0}\delta V(\overline{p} ,n)+\sum _{i=1}^{n-1}q_{i}\delta V(\overline{p},n-i)+\sum _{i=n}^{\infty }q_{i} \overline{p} \nonumber \\&\quad \Longrightarrow p^{*} \ge \frac{\sum _{i=1}^{n-1}q_{i}\frac{i}{n} \delta V(\overline{p},n-i)+\sum _{i=n}^{\infty }q_{i}\overline{p}}{ \sum _{i=1}^{n-1}q_{i}\frac{i}{n}+\sum _{i=n}^{\infty }q_{i}} \nonumber \end{aligned}$$
(32)

Therefore, \((p^{*},\ldots ,p^{*})\) constitutes an equilibrium if and only if the following inequality holds:

$$\begin{aligned} \frac{\sum _{i=1}^{n-1}q_{i}(1-\frac{i}{n})\delta V(\overline{p},n-i)}{ \sum _{i=1}^{n-1}q_{i}(1-\frac{i}{n})}\ge \frac{\sum _{i=1}^{n-1}q_{i}\frac{i }{n}\delta V(\overline{p},n-i)+\sum _{i=n}^{\infty }q_{i}\overline{p}}{ \sum _{i=1}^{n-1}q_{i}\frac{i}{n}+\sum _{i=n}^{\infty }q_{i}}. \end{aligned}$$
(33)

Let us consider four subcases:

Case 1. \(\Lambda (n,\{q_{i}\}_{i=0}^{\infty })=1\) (one non-zero demand state). In this case \(\underline{i}=\overline{i}\) is the only \(i\in \{1,\ldots ,n-1,n+\}\) with \(q_{i}>0\).Footnote 14 It can be readily seen that the inequality holds and \((p^{*},\ldots , p^{*})\) constitutes an equilibrium with \(p^{*}=\left\{ \begin{array}{cc} \delta V(\overline{p},n-\overline{i}) &{} \overline{i}\ne n+ \\ \overline{p} &{} \overline{i}=n+ \end{array} \right. =\eta _{n}.\)

Moreover, in equilibrium each seller’s expected profit is \(V(\overline{p} ,n), \) so our claim \(\widehat{V}(n)=V(\overline{p},n)\) is verified.

Case 2. \(\Lambda (n,\{q_{i}\}_{i=0}^{\infty })\ge 2\) with \(\overline{i}=n+\) (i.e., \(\sum _{i=n}^{\infty }q_{i}=q_{n+}>0).\) As \(\delta V( \overline{p},n-1)\le \delta V(\overline{p},n-2)\le \cdots \le \delta V( \overline{p},1)<\overline{p}\), we have

$$\begin{aligned}&\frac{\sum _{i=1}^{n-1}q_{i}(1-\frac{i}{n})\delta V(\overline{p},n-i)}{ \sum _{i=1}^{n-1}q_{i}(1-\frac{i}{n})}\le \frac{\sum _{i=1}^{n-1}q_{i}\frac{i }{n}\delta V(\overline{p},n-i)}{\sum _{i=1}^{n-1}q_{i}\frac{i}{n}}\\&\quad <\frac{ \sum _{i=1}^{n-1}q_{i}\frac{i}{n}\delta V(\overline{p},n-i)+\sum _{i=n}^{ \infty }q_{i}\overline{p}}{\sum _{i=1}^{n-1}q_{i}\frac{i}{n} +\sum _{i=n}^{\infty }q_{i}}. \end{aligned}$$

Hence the inequality does not hold and there exists no symmetric pure-strategy equilibrium.

Case 3. \(\Lambda (n,\{q_{i}\}_{i=0}^{\infty })\ge 2\), \( \overline{i}\ne n+\) and \(V(\overline{p},n-\overline{i})=V(\overline{p},n- \underline{i}).\) By definition, \(V(\overline{p},n-\overline{i})\ge V( \overline{p},j)\ge V(\overline{p},n-\underline{i})\) for every \(n-\overline{i }<j<n-\underline{i}.\) \(V(\overline{p},n-\overline{i})=V(\overline{p},n- \underline{i})\) implies \(V(\overline{p},n-\overline{i})=V(\overline{p},j)\) for every \(n-\overline{i}<j<n-\underline{i}.\) Accordingly,

$$\begin{aligned}&\frac{\sum _{i=1}^{n-1}q_{i}(1-\frac{i}{n})\delta V(\overline{p},n-i)}{ \sum _{i=1}^{n-1}q_{i}(1-\frac{i}{n})} =\frac{\sum _{i=\underline{i}}^{ \overline{i}}q_{i}(1-\frac{i}{n})\delta V(\overline{p},n-i)}{\sum _{i= \underline{i}}^{\overline{i}}q_{i}(1-\frac{i}{n})}\\&\quad =\delta V(\overline{p},n- \underline{i})=\frac{\sum _{i=\underline{i}}^{\overline{i}}q_{i}\frac{i}{n} \delta V(\overline{p},n-i)}{\sum _{i=\underline{i}}^{\overline{i}}q_{i}\frac{i }{n}} \\&\quad =\frac{\sum _{i=1}^{n-1}q_{i}\frac{i}{n}\delta V(\overline{p},n-i)}{ \sum _{i=1}^{n-1}q_{i}\frac{i}{n}}=\frac{\sum _{i=1}^{n-1}q_{i}\frac{i}{n} \delta V(\overline{p},n-i)+\sum _{i=n}^{\infty }q_{i}\overline{p}}{ \sum _{i=1}^{n-1}q_{i}\frac{i}{n}+\sum _{i=n}^{\infty }q_{i}} \end{aligned}$$

Therefore the inequality holds and \((p^{*},\ldots ,p^{*})\) constitutes an equilibrium with \(p^{*}=\delta V(\overline{p},n-\underline{i})=V( \overline{p},n-\overline{i}).\) In equilibrium each seller’s expected profit is \(V(\overline{p},n),\) and our claim \(\widehat{V}(n)=V(\overline{p},n)\) is verified.

Case 4. \(\Lambda (n,\{q_{i}\}_{i=0}^{\infty })\ge 2\), \( \overline{i}\ne n+\) and \(V(\overline{p},n-\overline{i})>V(\overline{p},n- \underline{i}).\) As \(\delta V(\overline{p},n-1)\le \delta V(\overline{p} ,n-2)\le \cdots \le \delta V(\overline{p},1),\) \(1-\frac{i}{n}\) is decreasing in i and \(\frac{i}{n}\) is increasing in i, we observe that

$$\begin{aligned} \frac{\sum _{i=1}^{n-1}q_{i}(1-\frac{i}{n})\delta V(\overline{p},n-i)}{ \sum _{i=1}^{n-1}q_{i}(1-\frac{i}{n})}\le \frac{\sum _{i=1}^{n-1}q_{i}\frac{i }{n}\delta V(\overline{p},n-i)}{\sum _{i=1}^{n-1}q_{i}\frac{i}{n}}. \end{aligned}$$

Moreover, this inequality holds strictly whenever there are \(i,j\in \{1,\ldots ,n-1\}\) such that \(q_{i}>0,q_{j}>0,\) and \(V(\overline{p},n-i)\ne V( \overline{p},n-j).\) Here we have \(q_{\overline{i}}>0,q_{\underline{i}}>0\) and \(V(\overline{p},n-\overline{i})>V(\overline{p},n-\underline{i}),\) and hence the above inequality holds strictly. This directly implies that the equilibrium condition does not hold, and hence there exists no symmetric pure-strategy equilibrium under this case.

To summarize, we have shown that there exists a unique symmetric pure-strategy equilibrium (i.e., \(F_{n}\) is degenerate) if and only if the degree of demand uncertainty is low. When the degree of demand uncertainty is high, \(F_{n}\) is non-degenerate. In the next step we show that \( F_{n}=W_{n}\) (defined in Eq. (14)).

Step 2. Price dispersion when sellers face high demand uncertainty

We prove it by induction. \(F_{2}=W_{2}\) in a high demand state from Proposition 4, and the expected profit for each seller is \(V(\overline{p},2)\) in equilibrium. Suppose each seller’s expected profit is \(V(\overline{p},i)\) in any period t with i sellers remaining in the market, \(i=2,\ldots ,n-1.\) We show that in a high demand state \(F_{n}=W_{n}\) constitutes a unique equilibrium strategy in period t with \(S_{t}=n>\underline{i}.\) First we establish a few lemmas to show that \(G_{n}\) (defined in Eq. (13)) is strictly increasing when the degree of demand uncertainty is high, and hence \(W_{n}\) is a non-degenerate distribution.

Lemma 1

Let \(\Phi _{n}(x): \mathbb {R} \rightarrow \mathbb {R} \) be of the form

$$\begin{aligned} \Phi _{n}(x)=\frac{\alpha _{1}(x)C_{1}+\alpha _{2}(x)C_{2}+\cdots +\alpha _{n}(x)C_{n}}{\alpha _{1}(x)+\alpha _{2}(x)+\cdots +\alpha _{n}(x)}, \end{aligned}$$

where \(C_{1}\le C_{2}\le \cdots \le C_{n}\), \(\alpha _{i}(x)\ge 0\) is differentiable for \(i=1,2,\ldots ,n\), and \(\sum _{i=1}^{n}\alpha _{i}(x)\ne 0\) \( \forall x\in \mathbb {R} .\) Then \(\frac{\partial }{\partial x}\Phi _{n}(x)>0\) if \(\alpha _{j}(x)\frac{ \partial }{\partial x}[\sum _{i=j+1}^{n}\alpha _{i}(x)]-\sum _{i=j+1}^{n}\alpha _{i}(x)\frac{\partial }{\partial x}\alpha _{j}(x)\ge 0\) for \(j=1,\ldots ,n-1,\) and this holds with strict inequality for some \(j^{*}\) and \(C_{j^{*}}<\frac{\sum _{i=j^{*}+1}^{n}\alpha _{i}(x)C_{i}}{\sum _{i=j^{*}+1}^{n}\alpha _{i}(x)}\).

Proof

We prove it by induction. The result is trivially true for \(n=2\). When \(n=3\), we can rewrite \(\Phi _{3}(x)\) as

$$\begin{aligned} \Phi _{3}(x)= & {} \frac{\alpha _{1}(x)C_{1}+\alpha _{2}(x)C_{2}+\alpha _{3}(x)C_{3}}{\alpha _{1}(x)+\alpha _{2}(x)+\alpha _{3}(x)}\nonumber \\= & {} \frac{\alpha _{1}(x)C_{1}+[\alpha _{2}(x)+\alpha _{3}(x)]\{\frac{\alpha _{2}(x)C_{2}+\alpha _{3}(x)C_{3}}{\alpha _{2}(x)+\alpha _{3}(x)}\}}{\alpha _{1}(x)+[\alpha _{2}(x)+\alpha _{3}(x)]} \end{aligned}$$
(34)

First taking \(\frac{\alpha _{2}(x)C_{2}+\alpha _{3}(x)C_{3}}{\alpha _{2}(x)+\alpha _{3}(x)}\) as constant and applying the \(n=2\) result, \(\frac{ \partial }{\partial x}\Phi _{3}(x)>0\) if \(\alpha _{1}(x)\frac{\partial }{ \partial x}[\alpha _{2}(x)+\alpha _{3}(x)]-[\alpha _{2}(x)+\alpha _{3}(x)] \frac{\partial }{\partial x}\alpha _{1}(x)>0\) and \(C_{1}<\frac{\alpha _{2}(x)C_{2}+\alpha _{3}(x)C_{3}}{\alpha _{2}(x)+\alpha _{3}(x)}\) (condition (i)). Second, applying the \(n=2\) result on \(\frac{\alpha _{2}(x)C_{2}+\alpha _{3}(x)C_{3}}{\alpha _{2}(x)+\alpha _{3}(x)}\) we get \(\frac{\partial }{ \partial x}\frac{\alpha _{2}(x)C_{2}+\alpha _{3}(x)C_{3}}{\alpha _{2}(x)+\alpha _{3}(x)}>0\) if \(\alpha _{2}(x)\frac{\partial }{\partial x} \alpha _{3}(x)-\alpha _{3}(x)\frac{\partial }{\partial x}\alpha _{2}(x)>0\) and \(C_{2}<C_{3}\) (condition (ii)). Then it can be readily seen that \(\Phi _{3}(x)>0\) when either (i) or (ii) holds, and the other condition holds weakly. Hence the \(n=3\) case is established. Inductively applying the same argument for any \(n\in \mathbb {N} ,\) we get the conditions stated in the lemma. \(\square \)

Lemma 2

\(\frac{\partial }{\partial x}Z_{k,n}(x)=-(k+1)\left( {\begin{array}{c}n-1\\ k+1\end{array}}\right) (1-x)^{n-2-k}x^{k}<0 \forall x\in (0,1).\)

Proof

$$\begin{aligned} \frac{\partial }{\partial x}Z_{k,n}(x)= & {} \frac{\partial }{\partial x} \sum _{i=0}^{k}\left( {\begin{array}{c}n-1\\ i\end{array}}\right) (1-x)^{n-1-i}x^{i} \nonumber \\= & {} \sum _{i=0}^{k}\left[ \phantom {\left. +i\left( {\begin{array}{c}n-1\\ i\end{array}}\right) (1-x)^{n-1-i}x^{i-1}\right] }-(n-1-i)\left( {\begin{array}{c}n-1\\ i\end{array}}\right) (1-x)^{n-2-i}x^{i}\right. \nonumber \\&\left. +i\left( {\begin{array}{c}n-1\\ i\end{array}}\right) (1-x)^{n-1-i}x^{i-1}\right] \nonumber \\= & {} \sum _{i=0}^{k}\left[ -(i+1)\left( {\begin{array}{c}n-1\\ i+1\end{array}}\right) (1-x)^{n-2-i}x^{i}+i\left( {\begin{array}{c}n-1\\ i\end{array}}\right) (1-x)^{n-1-i}x^{i-1}\right] \nonumber \\= & {} -(k+1)\left( {\begin{array}{c}n-1\\ k+1\end{array}}\right) (1-x)^{n-2-k}x^{k}. \end{aligned}$$
(35)

\(\square \)

Lemma 3

Given \(q_{i}>0\) and \(q_{j}>0\) for some \(i,j\in \{1,\ldots ,n-1,n+\},\) \(\frac{ \partial }{\partial x}G_{n}(x)>0\) \(\forall x\in (0,1).\)

Proof

We observe that \(\delta V(\overline{p},n-1)\le \delta V(\overline{p} ,n-2)\le \cdots \le \delta V(\overline{p},1)<\overline{p},\) \( \{q_{i}Z_{i-1,n}(x)\}_{i=1}^{n-1}\ge 0,\) \(\sum _{i=n}^{\infty }q_{i}\ge 0,\) and \(\sum _{i=1}^{n-1}q_{i}Z_{i-1,n}(x)+\sum _{i=n}^{\infty }q_{i}>0\) \(\forall x\in (0,1).\) Hence, \(G_{n}(x)\) meets the functional form of \(\Phi _{n}(x)\) specified in Lemma 1. By Lemma 1, \(\frac{\partial }{\partial x}G_{n}(x)>0\) \( \forall x\in (0,1)\) if the following conditions are satisfied:

$$\begin{aligned}&q_{n-1}Z_{n-2,n}(x)\frac{\partial }{\partial x}\left[ \sum _{i=n}^{\infty }q_{i}\right] -\left[ \sum _{i=n}^{\infty }q_{i}\right] \frac{\partial }{\partial x} [q_{n-1}Z_{n-2,n}(x)]\ge 0 \end{aligned}$$
(36)
$$\begin{aligned}&\Psi _{j}(x)= \begin{array}{l} q_{n-j+1}Z_{n-j,n}(x)\frac{\partial }{\partial x} \left[ \sum _{i=1}^{j-2}q_{n-j+1+i}Z_{n-j+i,n}(x)+\sum _{i=n}^{\infty }q_{i}\right] \\ -[\sum _{i=1}^{j-2}q_{n-j+1+i}Z_{n-j+i,n}(x)+\sum _{i=n}^{\infty }q_{i}] \frac{\partial }{\partial x}[q_{n-j+1}Z_{n-j,n}(x)] \end{array}\nonumber \\&\qquad \qquad \ge 0,\text { }j=3,\ldots ,n. \end{aligned}$$
(37)

Moreover, one of the above conditions holds with strict inequality for some \( j^{*}\) and

$$\begin{aligned} \delta V(\overline{p},j^{*}-1)<\frac{\sum _{i=1}^{j^{*}-2}q_{n-j^{*}+1+i}Z_{n-j^{*}+i,n}(x)\delta V(\overline{p},j^{*}-1-i)+\sum _{i=n}^{\infty }q_{i}\overline{p}}{\sum _{i=1}^{j^{*}-2}q_{n-j^{*}+1+i}Z_{n-j^{*}+i,n}(x)+\sum _{i=n}^{\infty }q_{i}}. \end{aligned}$$
(38)

By Lemma 2, we have

$$\begin{aligned}&q_{n-1}Z_{n-2,n}(x)\frac{\partial }{\partial x}\left[ \sum _{i=n}^{\infty }q_{i}\right] -\left[ \sum _{i=n}^{\infty }q_{i}\right] \frac{\partial }{\partial x} [q_{n-1}Z_{n-2,n}(x)]\nonumber \\&\quad =\left[ \sum _{i=n}^{\infty }q_{i}\right] q_{n-1}(n-1)x^{n-2}\ge 0. \end{aligned}$$
(39)

We observe that

$$\begin{aligned} \Psi _{j}(x)= & {} q_{n-j+1}Z_{n-j,n}(x)\frac{\partial }{\partial x} \left[ \sum _{i=1}^{j-2}q_{n-j+1+i}Z_{n-j+i,n}(x)+\sum _{i=n}^{\infty }q_{i}\right] \nonumber \\&-\left[ \sum _{i=1}^{j-2}q_{n-j+1+i}Z_{n-j+i,n}(x)+\sum _{i=n}^{\infty }q_{i}\right] \frac{\partial }{\partial x}[q_{n-j+1}Z_{n-j,n}(x)] \nonumber \\\ge & {} \Gamma _{j}(x)\equiv q_{n-j+1}Z_{n-j,n}(x)\frac{\partial }{\partial x} \left[ \sum _{i=1}^{j-2}q_{n-j+1+i}Z_{n-j+i,n}(x)\right] \nonumber \\&-\left[ \sum _{i=1}^{j-2}q_{n-j+1+i}Z_{n-j+i,n}(x)\right] \frac{\partial }{\partial x} [q_{n-j+1}Z_{n-j,n}(x)] \end{aligned}$$
(40)

After simplification, we get:

$$\begin{aligned} \Gamma _{j}(x)= & {} q_{n-j+1}\sum _{i=1}^{j-2}\sum _{k=n-j+1}^{n-j+i} \sum _{l=0}^{n-j}q_{n-j+1+i}\left( {\begin{array}{c}n-1\\ k\end{array}}\right) \\&\left( {\begin{array}{c}n-1\\ l\end{array}}\right) [(1-x)^{2n-2-l-k}x^{l+k}](k-l)\frac{\partial }{\partial x}\log \frac{x}{1-x} \ge 0 \end{aligned}$$

Therefore, conditions (36) and (37) are satisfied. Next we show that at least one condition holds with strict inequality when the degree of demand uncertainty is high. Recall that a selling game \(\Gamma (n,\{q_{i}\}_{i=0}^{\infty })\) is said to have a high degree of demand uncertainty if (i) \(\Lambda (n,\{q_{i}\}_{i=0}^{\infty })\ge 2\) and \( \overline{i}=n+,\) or (ii) \(\Lambda (n,\{q_{i}\}_{i=0}^{\infty })\ge 2,\) \( \overline{i}\ne n+\) and \(V(\overline{p},n-\overline{i})>V(\overline{p},n- \underline{i}).\) Consider three subcases:

Case 1. \(\sum _{i=n}^{\infty }q_{i}>0\) (\(\overline{i}=n+)\) and \(q_{n-1}>0.\) Since \(\delta V(\overline{p},1)<\overline{p}\) and condition (39) holds with strict inequality when \(\sum _{i=n}^{\infty }q_{i}>0\) and \( q_{n-1}>0,\) by Lemma 1 \(\frac{\partial }{\partial x}G_{n}(x)>0\) \(\forall x\in (0,1).\)

Case 2. \(\sum _{i=n}^{\infty }q_{i}>0\) (\(\overline{i}=n+)\) and \(q_{n-1}=0.\) Let \(j^{*}=n+1-\underline{i}.\) As \(\sum _{i=n}^{\infty }q_{i}>0\) and \(\delta V(\overline{p},j^{*}-1)\le \cdots \le \delta V( \overline{p},1)<\overline{p},\) condition (38) holds. Moreover, by Lemma 2 we have

$$\begin{aligned} \Psi _{j^{*}}(x)= & {} \Gamma _{j^{*}}(x)-\sum _{i=n}^{\infty }q_{i}\frac{ \partial }{\partial x}[q_{n-j^{*}+1}Z_{n-j^{*},n}(x)]\\= & {} \Gamma _{j^{*}}(x)-q_{\underline{i}}\sum _{i=n}^{\infty }q_{i}\frac{\partial }{ \partial x}Z_{n-j^{*},n}(x)>\Gamma _{j^{*}}(x)\ge 0. \end{aligned}$$

Thus, by Lemma 1, \(\frac{\partial }{\partial x}G_{n}(x)>0\) \(\forall x\in (0,1).\)

Case 3. \(\sum _{i=n}^{\infty }q_{i}=0\) ( \(\overline{i}\ne n+)\) and \(V(\overline{p},n-\overline{i})>V(\overline{p},n-\underline{i}).\) Let \(j^{*}=n+1-\underline{i}\). Since \(q_{n-j^{*}+1}=q_{\underline{i} }>0\) and \(q_{\overline{i}}>0\) with \(\overline{i}>\underline{i}\),

$$\begin{aligned} \Psi _{j^{*}}(x)= & {} \Gamma _{j^{*}}(x) \\= & {} q_{\underline{i}}\sum _{i=1}^{j^{*}-2}q_{n-j^{*}+1+i}\sum _{k=n-j^{*}+1}^{n-j^{*}+i}\sum _{l=0}^{n-j^{*}}\left( {\begin{array}{c}n-1\\ k\end{array}}\right) \\&\left( {\begin{array}{c}n-1\\ l\end{array}}\right) [(1-x)^{2n-2-l-k}x^{l+k}](k-l)\frac{\partial }{\partial x}\log \frac{x}{1-x} \\\ge & {} q_{\underline{i}}q_{\overline{i}}\sum _{k=n-j^{*}+1}^{n-j^{*}+i}\sum _{l=0}^{n-j^{*}}\left( {\begin{array}{c}n-1\\ k\end{array}}\right) \\&\left( {\begin{array}{c}n-1\\ l\end{array}}\right) [(1-x)^{2n-2-l-k}x^{l+k}](k-l)\frac{\partial }{\partial x}\log \frac{x}{1-x} >0. \end{aligned}$$

Next we observe that \(\delta V(\overline{p},j^{*}-1)=\delta V(\overline{p },n-\underline{i})<\delta V(\overline{p},j^{*}-1-\overline{i}+\underline{ i})=\delta V(\overline{p},n-\overline{i}),\) which in turn implies

$$\begin{aligned} \delta V(\overline{p},j^{*}-1)<\frac{\sum _{i=1}^{j^{*}-2}q_{n-j^{*}+1+i}Z_{n-j^{*}+i,n}(x)\delta V(\overline{p},j^{*}-1-i)+\sum _{i=n}^{\infty }q_{i}\overline{p}}{\sum _{i=1}^{j^{*}-2}q_{n-j^{*}+1+i}Z_{n-j^{*}+i,n}(x)+\sum _{i=n}^{\infty }q_{i}}. \end{aligned}$$

Again, by Lemma 1, \(\frac{\partial }{\partial x}G_{n}(x)>0\) \(\forall x\in (0,1)\) in this case, and the proof of this lemma is complete. \(\square \)

Lemma 4

\(W_{n}(p)\) is a probability distribution with \(W_{n}(\eta _{n})=\lim _{x\rightarrow \eta _{n}}G_{n}^{-1}(x)=1\) and \(W_{n}(p_{n}^{*})=0.\)

Proof

It can be readily verified that \(W_{n}(p_{n}^{*})=G_{n}^{-1}(p_{n}^{*})=0\) and \(W_{n}(\eta _{n})=\lim _{x\rightarrow \eta _{n}}G_{n}^{-1}(x)=1.\) Since \(G_{n}(p)\) is strictly increasing in [0, 1) , \(W_{n}(p)=G_{n}^{-1}(p)\) is well defined and strictly increasing in \([p_{n}^{*},\eta _{n}].\)

Now we are in the position to prove that \(F_{n}=W_{n}.\) As each seller plays \(F_{n}\) constitutes an equilibrium, no one will deviate if the other \(n-1\) sellers play mixed-strategies according to \(F_{n}\) when there are n sellers in the market in period t. It is equivalent to saying that setting any price between \([l_{n},u_{n}]\) gives sellers the same expected profits, \( i.e.,\forall p\in [l_{n},u_{n}],\)

$$\begin{aligned} V(\overline{p},n)= & {} \frac{1}{1-\delta q_{0}}\left[ \sum _{i=1}^{n-1}q_{i}\delta V( \overline{p},n-i)+\sum _{i=n}^{\infty }q_{i}\overline{p}\right] \nonumber \\= & {} \frac{1}{1-\delta q_{0}}\left\{ \sum _{i=1}^{n-1}q_{i}[Z_{i-1}(F_{n}(p))p+(1-Z_{i-1}(F_{n}(p)))\delta V( \overline{p},n-i)]\right. \nonumber \\&\left. +\sum _{i=n}^{\infty }q_{i}p\right\} , \end{aligned}$$
(41)

or

$$\begin{aligned} \sum _{i=n}^{\infty }q_{i}\overline{p} =\sum _{i=1}^{n-1}q_{i}Z_{i-1}(F_{n}(p))[p-\delta V(\overline{p} ,n-i)]+\sum _{i=n}^{\infty }q_{i}p. \end{aligned}$$
(42)

Therefore,

$$\begin{aligned} p=\frac{\sum _{i=1}^{n-1}q_{i}Z_{i-1}(F_{n}(p))\delta V(\overline{p} ,n-i)+\sum _{i=n}^{\infty }q_{i}\overline{p}}{ \sum _{i=1}^{n-1}q_{i}Z_{i-1}(F_{n}(p))+\sum _{i=n}^{\infty }q_{i}}. \end{aligned}$$

We already knew that \(W_{n}(p)=G_{n}^{-1}(p)\) is the unique solution to this equation in \([p_{n}^{*},\eta _{n}]\). Moreover, in equilibrium we must have \(l_{n}=p_{n}^{*}\) and \(u_{n}=\eta _{n}.\) Hence \(F_{n}=W_{n}\) and each seller’s expected profit is \(V(\overline{p},n)\) in period t. Q.E.D.

Proof of the Remark

Suppose \(k^{*}=1.\) In this case, \(n-\overline{ i}\le \overline{i}.\) Consider three subcases:

  1. (i)

    If \(n-\underline{i}>\overline{i},\) then

    $$\begin{aligned} V(\overline{p},n-\overline{i})= & {} \frac{\sum _{j=\underline{i}}^{n-\overline{i} -1}q_{j}\delta V(\overline{p},n-\overline{i}-j)+\sum _{j=n-\overline{i}}^{ \overline{i}}q_{j}\overline{p}}{1-\delta q_{0}}\\> & {} \frac{\sum _{j=\underline{i} }^{\overline{i}}q_{j}\delta V(\overline{p},n-\underline{i}-j)}{1-\delta q_{0} }=V(\overline{p},n-\underline{i}). \end{aligned}$$
  2. (ii)

    If \(n-\overline{i}\le \underline{i}<n-\underline{i}\le \overline{i},\) then

    $$\begin{aligned} V(\overline{p},n-\overline{i})= & {} \frac{(1-q_{0})\overline{p}}{1-\delta q_{0}}> \frac{\sum _{j=\underline{i}}^{n-\underline{i}-1}q_{j}\delta V(\overline{p},n- \underline{i}-j)+\sum _{j=n-\underline{i}}^{\overline{i}}q_{j}\overline{p}}{ 1-\delta q_{0}}\\= & {} V(\overline{p},n-\underline{i}). \end{aligned}$$
  3. (iv)

    If \(n-\overline{i}<n-\underline{i}\le \underline{i},\) then

    $$\begin{aligned} V(\overline{p},n-\overline{i})=\frac{(1-q_{0})\overline{p}}{1-\delta q_{0}} =V(\overline{p},n-\underline{i}). \end{aligned}$$

    Thus, \(V(\overline{p},n-\overline{i})>V(\overline{p},n-\underline{i})\) if and only if \(n>(k^{*}+1)\underline{i}=2\underline{i}.\)

Now suppose \(\Gamma (n,\{q_{i}\}_{i=0}^{\infty })\) is a selling game with \( k^{*}=m>1.\) First we show that for every \(h\in \{1,\ldots ,m-1\}, V( \overline{p},n-h\overline{i})>V(\overline{p},n-h\underline{i})\) if and only if \(V(\overline{p},n-(h+1)\overline{i})>V(\overline{p},n-(h+1)\underline{i} ). \) By definition,

$$\begin{aligned} V(\overline{p},n-h\overline{i})= & {} \frac{\sum _{j=\underline{i}}^{\overline{i} }q_{j}\delta V(\overline{p},n-h\overline{i}-j)}{1-\delta q_{0}}\\\ge & {} V( \overline{p},n-h\underline{i})=\frac{\sum _{j=\underline{i}}^{\overline{i} }q_{j}\delta V(\overline{p},n-h\underline{i}-j)}{1-\delta q_{0}}. \end{aligned}$$

If \(V(\overline{p},n-(h+1)\overline{i})=V(\overline{p},n-(h+1)\underline{i} ), \) then by the weak monotonicity of \(V(\overline{p},\cdot ),\) \(V(\overline{ p},n-j)=V(\overline{p},n-(h+1)\underline{i})\) for \(j\in \{(h+1)\underline{i} +1,\ldots ,(h+1)\overline{i}\},\) which in turn implies that \(V(\overline{p},n-h \overline{i})=V(\overline{p},n-h\underline{i}).\) On the other hand, as both \( q_{\underline{i}}\) and \(q_{\overline{i}}\) are positive, \(V(\overline{p},n-h \overline{i})=V(\overline{p},n-h\underline{i})\) implies that \(V(\overline{p} ,n-h\overline{i}-\underline{i})=\) \(V(\overline{p},n-(h+1)\underline{i})\) and \(V(\overline{p},n-(h+1)\overline{i})=V(\overline{p},n-h\underline{i}- \overline{i}).\) Since \(n-(h+1)\overline{i}<n-h\overline{i}-\underline{i}<n-h \underline{i}-\overline{i}<n-(h+1)\underline{i},\) by the weak monotonicity of \(V(\overline{p},\cdot )\) again, \(V(\overline{p},n-(h+1)\underline{i})=V( \overline{p},n-(h+1)\overline{i}).\) Thus, \(V(\overline{p},n-h\overline{i})>V( \overline{p},n-h\underline{i})\) if and only if \(V(\overline{p},n-(h+1) \overline{i})>V(\overline{p},n-(h+1)\underline{i}).\)

Since it holds for every \(h\in \{1,\ldots ,m-1\},\) by induction, \(V(\overline{p} ,n-\overline{i})>V(\overline{p},n-\underline{i})\) if and only if \(V( \overline{p},n-m\overline{i})>V(\overline{p},n-m\underline{i}).\) Therefore, the remark is established if we are able to show that \(V(\overline{p},n-m \overline{i})>V(\overline{p},n-m\underline{i})\) if and only if \(n>(m+1) \underline{i}.\) Note that from the definition of \(k^{*},\) \(n-m\overline{i }\le \overline{i}.\) Consider three subcases:

  1. (i)

    If \(n-m\underline{i}>\overline{i},\) then

    $$\begin{aligned} V(\overline{p},n-m\overline{i})= & {} \frac{\sum _{j=\underline{i}}^{n-m\overline{i} -1}q_{j}\delta V(\overline{p},n-m\overline{i}-j)+\sum _{j=n-m\overline{i}}^{ \overline{i}}q_{j}\overline{p}}{1-\delta q_{0}}\\> & {} \frac{\sum _{j=\underline{i} }^{\overline{i}}q_{j}\delta V(\overline{p},n-m\underline{i}-j)}{1-\delta q_{0}}=V(\overline{p},n-m\underline{i}). \end{aligned}$$
  2. (ii)

    If \(n-m\overline{i}\le \underline{i}<n-m\underline{i}\le \overline{i} , \) then

    $$\begin{aligned} V(\overline{p},n-m\overline{i})= & {} \frac{(1-q_{0})\overline{p}}{1-\delta q_{0}}\\> & {} \frac{\sum _{j=\underline{i}}^{n-m\underline{i}-1}q_{j}\delta V(\overline{p} ,n-m\underline{i}-j)+\sum _{j=n-m\underline{i}}^{\overline{i}}q_{j}\overline{p }}{1-\delta q_{0}}\\&=V(\overline{p},n-m\underline{i}). \end{aligned}$$
  3. (iii)

    If \(n-m\overline{i}<n-m\underline{i}\le \underline{i},\) then

    $$\begin{aligned} V(\overline{p},n-m\overline{i})=\frac{(1-q_{0})\overline{p}}{1-\delta q_{0}} =V(\overline{p},n-m\underline{i}). \end{aligned}$$

Accordingly, \(V(\overline{p},n-m\overline{i})>V(\overline{p},n-m\underline{i} )\) if and only if \(n>(m+1)\underline{i}.\) \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Cj. Dynamic price dispersion in Bertrand–Edgeworth competition. Int J Game Theory 46, 235–261 (2017). https://doi.org/10.1007/s00182-016-0531-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00182-016-0531-0

Keywords

JEL Classification

Navigation