Skip to main content
Log in

Mass transfer and flow in additive manufacturing of a spherical component

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper proposes a novel and coherent analysis of mass transfer and thermal stress flow (direction) in solidification of spherical components such as acetabular shells in selective laser melting of Ti-6Al-4 V. A detailed description of different phenomena such as solidification behaviour at the solid/liquid interface, behaviour of moving interface, thermal gradient, Gibbs free energy, interfacial energy and equilibrium temperature were utilised to characterise mass and thermal stress flow. Experimental results showed that thermal stress and mass flow on outer surfaces are higher than those found on inner surfaces which are related to the geometry and shape of the printed structures. Due to the mass transfer and thermal stress flow, built-up lines including a dent in the outer surfaces and grooves in the inner surfaces were observed with heights on the order of 200 μm. Post-processing is needed to remove the built-up lines which results in increasing dimensional deviations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibson I, Rosen DW, Stucker B (2014) Additive manufacturing technologies. Springer

  2. Khorasani AM, Goldberg M, Doeven EH, Littlefair G (2015) Titanium in biomedical applications—properties and fabrication: a review. J Biomater Tissue Eng 5(8):593–619. https://doi.org/10.1166/jbt.2015.1361

    Article  Google Scholar 

  3. Ziegler T, Jaeger R, Koplin C (2017) A design, mechanical rating, and load adaptation method for cellular components for additive manufacturing. Int J Adv Manuf Technol 90(9–12):2875–2884. https://doi.org/10.1007/s00170-016-9615-z

    Article  Google Scholar 

  4. Fahad M, Hopkinson N (2017) Evaluation and comparison of geometrical accuracy of parts produced by sintering-based additive manufacturing processes. Int J Adv Manuf Technol 88(9–12):3389–3394. https://doi.org/10.1007/s00170-016-9036-z

    Article  Google Scholar 

  5. Leal R, et al. (2017) Additive manufacturing tooling for the automotive industry. Int J Adv Manuf Technol : p. 1–6

  6. Huang C-L, Shih Y-P (1975) A perturbation method for spherical and cylindrical solidification. Chem Eng Sci 30(8):897–906. https://doi.org/10.1016/0009-2509(75)80055-8

    Article  Google Scholar 

  7. Tang Q, Pang S, Chen B, Suo H, Zhou J (2014) A three dimensional transient model for heat transfer and fluid flow of weld pool during electron beam freeform fabrication of Ti-6-Al-4-V alloy. Int J Heat Mass Transf 78:203–215. https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.048

    Article  Google Scholar 

  8. Ismail KAR, de Sousa Filho LM, Lino FAM (2012) Solidification of PCM around a curved tube. Int J Heat Mass Transf 55(7):1823–1835. https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.031

    Article  Google Scholar 

  9. Gong H et al (2014) Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf 1:87–98

    Article  Google Scholar 

  10. Körner C, Bauereiß A, Attar E (2013) Fundamental consolidation mechanisms during selective beam melting of powders. Model Simul Mater Sci Eng 21(8):085011. https://doi.org/10.1088/0965-0393/21/8/085011

    Article  Google Scholar 

  11. Ismail K, Henrıquez J (2002) Numerical and experimental study of spherical capsules packed bed latent heat storage system. Appl Therm Eng 22(15):1705–1716. https://doi.org/10.1016/S1359-4311(02)00080-7

    Article  Google Scholar 

  12. Shuja S, Yilbas B, Momin O (2011) Laser heating of a moving slab: influence of laser intensity parameter and scanning speed on temperature field and melt size. Opt Lasers Eng 49(2):265–272. https://doi.org/10.1016/j.optlaseng.2010.09.017

    Article  Google Scholar 

  13. Momin O, Shuja S, Yilbas B (2012) Laser heating of titanium and steel: phase change at the surface. Int J Therm Sci 54:230–241. https://doi.org/10.1016/j.ijthermalsci.2011.12.003

    Article  Google Scholar 

  14. Shuja SZ, Yilbas BS (2011) Laser produced melt pool: influence of laser intensity parameter on flow field in melt pool. Opt Laser Technol 43(4):767–775. https://doi.org/10.1016/j.optlastec.2010.12.003

    Article  Google Scholar 

  15. Harrysson OL et al (2008) Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng C 28(3):366–373. https://doi.org/10.1016/j.msec.2007.04.022

    Article  Google Scholar 

  16. Murr L et al (2009) Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater 2(1):20–32. https://doi.org/10.1016/j.jmbbm.2008.05.004

    Article  Google Scholar 

  17. Zhang L et al (2011) Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scr Mater 65(1):21–24. https://doi.org/10.1016/j.scriptamat.2011.03.024

    Article  Google Scholar 

  18. Santos EC, Shiomi M, Osakada K, Laoui T (2006) Rapid manufacturing of metal components by laser forming. Int J Mach Tools Manuf 46(12):1459–1468. https://doi.org/10.1016/j.ijmachtools.2005.09.005

    Article  Google Scholar 

  19. Gharbi M, Peyre P, Gorny C, Carin M, Morville S, le Masson P, Carron D, Fabbro R (2013) Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti–6Al–4V alloy. J Mater Process Technol 213(5):791–800. https://doi.org/10.1016/j.jmatprotec.2012.11.015

    Article  Google Scholar 

  20. Ismail K, Henríquez J (2000) Solidification of PCM inside a spherical capsule. Energy Convers Manag 41(2):173–187. https://doi.org/10.1016/S0196-8904(99)00101-6

    Article  Google Scholar 

  21. Glicksman ME (2010) Principles of solidification: an introduction to modern casting and crystal growth concepts. Springer

  22. Khorasani AM, Gibson I, Goldberg M, Littlefair G (2016) A survey on mechanisms and critical parameters on solidification of selective laser melting during fabrication of Ti-6Al-4V prosthetic acetabular cup. Mater Des 103:348–355. https://doi.org/10.1016/j.matdes.2016.04.074

    Article  Google Scholar 

  23. Khorasani AM, et al. (2016) Production of Ti-6Al-4V acetabular shell using selective laser melting: possible limitations in fabrication. Rapid Prototyp J. 23(1)

  24. Khorasani AM, Gibson I, Goldberg M, Masoud Movahedi M, Littlefair G (2017) Thermal stress flow analysis in fabrication of acetabular shells using SLM. KnE Eng 2(2):297–307. https://doi.org/10.18502/keg.v2i2.629

    Article  Google Scholar 

  25. Li Y, Gu D (2014) Thermal behavior during selective laser melting of commercially pure titanium powder: numerical simulation and experimental study. Addit Manuf 1:99–109

    Article  Google Scholar 

  26. Li Y, Gu D (2014) Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater Des 63:856–867. https://doi.org/10.1016/j.matdes.2014.07.006

    Article  Google Scholar 

  27. Xia M, Gu D, Yu G, Dai D, Chen H, Shi Q (2016) Influence of hatch spacing on heat and mass transfer, thermodynamics and laser processability during additive manufacturing of Inconel 718 alloy. Int J Mach Tools Manuf 109:147–157. https://doi.org/10.1016/j.ijmachtools.2016.07.010

    Article  Google Scholar 

  28. Verhaeghe F, Craeghs T, Heulens J, Pandelaers L (2009) A pragmatic model for selective laser melting with evaporation. Acta Mater 57(20):6006–6012. https://doi.org/10.1016/j.actamat.2009.08.027

    Article  Google Scholar 

  29. Heisel C, Kleinhans JA, Menge M, Kretzer JP (2009) Ten different hip resurfacing systems: biomechanical analysis of design and material properties. Int Orthop 33(4):939–943. https://doi.org/10.1007/s00264-008-0607-y

    Article  Google Scholar 

  30. Rosenberg O, Vozny V, Sokhan C, Gawlik J, Mamalis AG, Kim DJ (2006) Trends and developments in the manufacturing of hip joints: an overview. Int J Adv Manuf Technol 27(5–6):537–542. https://doi.org/10.1007/s00170-004-2189-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Mahyar Khorasani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorasani, A.M., Gibson, I., Asadnia, M. et al. Mass transfer and flow in additive manufacturing of a spherical component. Int J Adv Manuf Technol 96, 3711–3718 (2018). https://doi.org/10.1007/s00170-017-1483-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1483-7

Keywords

Navigation