Skip to main content
Log in

A hybrid cuckoo search and variable neighborhood descent for single and multiobjective scheduling problems

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Cuckoo search (CS) is a relatively new meta-heuristic that has proven its strength in solving continuous optimization problems. This papers applies cuckoo search to the class of sequencing problems by hybridizing it with a variable neighborhood descent local search for enhancing the quality of the obtained solutions. The Lévy flight operator proposed in the original CS is modified to address the discrete nature of scheduling problems. Two well-known problems are used to demonstrate the effectiveness of the proposed hybrid CS approach. The first is the NP-hard single objective problem of minimizing the weighted total tardiness time (\(1|| \sum {T_{w}}\)) and the second is the multiobjective problem of minimizing the flowtime \(\overline {C}\) and the maximum tardiness T m a x for single machine (\(1|| (\frac {1}{n}\sum {C}, T_{max})\)). For the first problem, computational results show that the hybrid CS is able to find the optimal solutions for all benchmark test instances with 40, 50, and 100 jobs and for most instances with 150, 200, 250, and 300 jobs. For the second problem, the hybrid CS generated solutions on and very close to the exact Pareto fronts of test instances with 10, 20, 30, and 40 jobs. In general, the results reveal that the hybrid CS is an adequate and robust method for tackling single and multiobjective scheduling problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceedings of world congress on nature & biologically inspired computing (NaBIC 2009), pp 210–214

  2. Yang XS, Deb S (2010) Engineering optimization by cuckoo search. Int J Math Model Numer Optim 1(4):330–343

    MATH  Google Scholar 

  3. Yang XS, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40(6):1616–1624

    Article  MathSciNet  Google Scholar 

  4. Rajabioun R (2011) Cuckoo optimization algorithm. Appl Soft Comput 11(8):5508–5518

    Article  Google Scholar 

  5. Gandomi A, Yang XS, Alavi A (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

    Article  MathSciNet  Google Scholar 

  6. Kumar A, Chakarverty S (2011) Design optimization using genetic algorithm and cuckoo search. In: Proceedings of IEEE international conference on electro/information technology (EIT), pp 1–5

  7. Yildiz A (2013) Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int J Adv Manuf Technol 64(1–4):55–61

    Article  Google Scholar 

  8. Tein TH, Ramli R (2010) Recent advancements of nurse scheduling models and a potential path. In: Proceedings of 6th IMT-GT conference on mathematics, statistics and its applications (ICMSA 2010), pp 395–409

  9. Layeb A (2011) A novel quantum inspired cuckoo search for knapsack problems. Int J Bio-Inspired Comput 3:297–305

    Google Scholar 

  10. Tuba M, Subotic M, Stanarevic N (2011) Modified cuckoo search algorithm for unconstrained optimization problems. In: Proceedings of 5th European conference on European computing conference (ECC’11). France, pp 263–268

  11. Zheng H, Zhou Y (2012) A novel cuckoo search optimization algorithm base on gauss distribution. J Comput Inf Syst 8(10):4193–4200

    MathSciNet  Google Scholar 

  12. Wang F, Lou L, He X, Wang Y (2011) Hybrid optimization algorithm of PSO and cuckoo search. In: Proceedings of 2nd international conference on artificial intelligence, management science and electronic commerce (AIMSEC’11), pp 1172–1175

  13. Civicioglu P, Besdok E (2011) A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif Intell Rev:1–32

  14. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  15. Burnwal S, Deb S (2013) Scheduling optimization of flexible manufacturing system using cuckoo search-based approach. Int J Adv Manuf Technol 64(5–8):951–959

    Article  Google Scholar 

  16. Hanoun S, Creighton D, Nahavandi S, Kull H (2012) Solving a multiobjective job shop scheduling problem using Pareto archived cuckoo search. In: Proceedings of 17th IEEE international conference on emerging technologies and factory automation (ETFA). Krakow, pp 1–8

  17. Potts CN, Van Wassenhove LN (1985) A branch and bound algorithm for the total weighted tardiness problem. Oper Res 33(2):363–377

    Article  MATH  MathSciNet  Google Scholar 

  18. Geiger MJ (2010) New instances for the single machine total weighted tardiness problem. Research Report RR-10-03-01. Helmut-Schmidt-University

  19. Tanaka S, Fujikuma S, Araki M (2009) An exact algorithm for single-machine scheduling withoutmachine idle time. J Sched 12(6):575–593

    Article  MATH  MathSciNet  Google Scholar 

  20. Van Wassenhove LN, Gelders LF (1980) Solving a bicriterion scheduling problem. Eur J Oper Res 4:42–48

    Article  MathSciNet  Google Scholar 

  21. Den Besten ML, Stützle T (2001) Neighborhoods revisited: an experimental investigation into the effectiveness of variable neighborhood descent for scheduling. In: Proceedings of the fourth metaheuristics international conference, vol 2, pp 545–549

  22. Geiger MJ (2010) On heuristic search for the single machine total weighted tardiness problem - some theoretical insights and their empirical verification. Eur J Oper Res 207(3):1235–1243

    Article  MATH  MathSciNet  Google Scholar 

  23. Mladenovic N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24:1097–1100

    Article  MATH  MathSciNet  Google Scholar 

  24. Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscip Optim 26:369–395

    Article  MATH  MathSciNet  Google Scholar 

  25. Sen T, Sulek JM, Dileepan P (2003) Static scheduling research to minimize weighted and unweighted tardiness: a state-of-the-art survey. Int J Prod Econ 83(1):1–12

    Article  Google Scholar 

  26. Koulamas C (2010) The single-machine total tardiness scheduling problem: review and extensions. Eur J Oper Res 202(1):1–7

    Article  MATH  MathSciNet  Google Scholar 

  27. Abdul-Razaq TS, Potts CN, Van Wassenhove LN (1990) A survey of algorithms for the single machine total weighted tardiness scheduling problem. Discret Appl Math 26(2–3):235–253

    Article  MATH  MathSciNet  Google Scholar 

  28. Du J, Leung JYT (1990) Minimizing total tardiness on one machine is NP-hard. Math Oper Res 15(3):483–495

    Article  MATH  MathSciNet  Google Scholar 

  29. Lawler EL (1977) A ’pseudopolynomial’ algorithm for sequencing jobs to minimize total tardiness. Ann Discret Math 1:331–342

    Article  MathSciNet  Google Scholar 

  30. Crauwels HAJ, Potts CN, Van Wassenhove LN (1998) Local search heuristics for the single machine total weighted tardiness scheduling problem. INFORMS J Comput 10(3):341–350

    Article  MATH  MathSciNet  Google Scholar 

  31. Den Besten ML, Stützle T, Dorigo M (2000) Ant colony optimization for the total weighted tardiness problem. In: Proceedings of the parallel problem solving from nature conference, pp 611–620

  32. Loukil T, Teghem J, Tuyttens D (2005) Solving multi-objective production scheduling problems using metaheuristics. Eur J Oper Res 161(1):42–61

    Article  MATH  MathSciNet  Google Scholar 

  33. Tasgetiren M, Sevkli M, Liang YC, Gencyilmaz G (2004) Particle swarm optimization algorithm for single machine total weighted tardiness problem. In: Proceedings of congress on evolutionary computation, pp 1412–1419

  34. Schrage LE, Baker KR (1978) Dynamic programming solution of sequencing problems with precedence constraints. Oper Res 26(3):444–449

    Article  MATH  Google Scholar 

  35. Emmons H (1969) One-machine scheduling to minimize certain functions of job tardiness. Oper Res 17:701–715

    Article  MATH  MathSciNet  Google Scholar 

  36. Rinnooy Kan AHG, Lageweg BJ, Lenstra JK (1975) Minimizing total costs in one-machine scheduling. Oper Res 23(5):908–927

    Article  MATH  MathSciNet  Google Scholar 

  37. Kanet JJ, Li X (2004) A weighted modified due date rule for sequencing to minimize weighted tardiness. J Sched 7(4):261–276

    Article  MATH  MathSciNet  Google Scholar 

  38. Potts CN, Van Wassenhove LN (1991) Single machine tardiness sequencing heuristics. IIE Trans 23(4):346–354

    Article  Google Scholar 

  39. Ben-Daya M, Al-Fawzan M (1996) A simulated annealing approach for the one-machine mean tardiness scheduling problem. Eur J Oper Res 93(1):61–67

    Article  MATH  Google Scholar 

  40. Nearchou A (2004) Solving the single machine total weighted tardiness scheduling problem using a hybrid simulated annealing algorithm. In: 2nd IEEE international conference on industrial informatics, INDIN ’04, pp 513–516

  41. Zhou H, Cheung W, Leung LC (2009) Minimizing weighted tardiness of job-shop scheduling using a hybrid genetic algorithm. Eur J Oper Res 194(3):637–649

    Article  MATH  Google Scholar 

  42. Xia Wj, Wu Zm (2006) A hybrid particle swarm optimization approach for the job-shop scheduling problem. Int J Adv Manuf Technol 29:360–366

    Article  Google Scholar 

  43. Sha D, Hsu CY (2006) A hybrid particle swarm optimization for job shop scheduling problem. Comput Ind Eng 51(4):791–808

    Article  Google Scholar 

  44. Pan Y, Shi L (2007) On the equivalence of the max-min transportation lower bound and the time-indexed lower bound for single-machine scheduling problems. Math Program 110(3):543–559

    Article  MATH  MathSciNet  Google Scholar 

  45. Hoogeveen JA, Van de Velde SL (1995) Minimizing total completion time and maximum cost simultaneously is solvable in polynomial time. Oper Res Lett 17:205–208

    Article  MATH  MathSciNet  Google Scholar 

  46. Koksalan M (1999) A heuristic approach to bicriteria scheduling. Naval Res Logist 46(7):777–789

    Article  MathSciNet  Google Scholar 

  47. Hoogeveen H (2005) Multicriteria scheduling. Eur J Oper Res 167(3):592–623

    Article  MATH  MathSciNet  Google Scholar 

  48. Nelson RT, Sarin RK, Daniels RL (1986) Scheduling with multiple performance measures: the one-machine case. Manag Sci 32(4):464–479

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samer Hanoun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanoun, S., Creighton, D. & Nahavandi, S. A hybrid cuckoo search and variable neighborhood descent for single and multiobjective scheduling problems. Int J Adv Manuf Technol 75, 1501–1516 (2014). https://doi.org/10.1007/s00170-014-6262-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6262-0

Keywords

Navigation