Skip to main content
Log in

Ontogenetic variation in cold tolerance plasticity in Drosophila: is the Bogert effect bogus?

  • Short Communication
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Ontogenetic variation in plasticity is important to understanding mechanisms and patterns of thermal tolerance variation. The Bogert effect postulates that, to compensate for their inability to behaviourally thermoregulate, less-mobile life stages of ectotherms are expected to show greater plasticity of thermal tolerance than more-mobile life stages. We test this general prediction by comparing plasticity of thermal tolerance (rapid cold-hardening, RCH) between mobile adults and less-mobile larvae of 16 Drosophila species. We find an RCH response in adults of 13 species but only in larvae of four species. Thus, the Bogert effect is not as widespread as expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford

    Book  Google Scholar 

  • Bowler K, Terblanche JS (2008) Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biol Rev 83:339–355

    Article  PubMed  Google Scholar 

  • Dillon ME, Wang G, Garrity PA, Huey RB (2009) Thermal preference in Drosophila. J Therm Biol 34:109–119

    Article  PubMed  Google Scholar 

  • Feder ME, Roberts SP, Bordelon AC (2000) Molecular thermal telemetry of free-ranging adult Drosophila melanogaster. Oecologia 123:460–465

    Article  Google Scholar 

  • Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Google Scholar 

  • Huey RB, Hertz PE, Sinervo B (2003) Behavioral drive versus behavioural inertia in evolution: a null model approach. Am Nat 161:357–366

    Article  PubMed  Google Scholar 

  • Jensen D, Overgaard J, Sørensen J (2007) The influence of developmental stage on cold shock resistance and ability to cold-harden in Drosophila melanogaster. J Insect Physiol 53:179–186

    Article  PubMed  CAS  Google Scholar 

  • Kelty JD, Lee RE Jr (2001) Induction of rapid cold hardening by cooling at ecologically relevant rates in Drosophila melanogaster. J Insect Physiol 45:719–726

    Article  Google Scholar 

  • Klok CJ, Chown SL (2001) Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic kelp fly, Paractora dreuxi (Diptera: Helcomyzidae). J Insect Physiol 47:95–109

    Article  PubMed  CAS  Google Scholar 

  • Kristensen TN, Loeschcke V, Bilde T, Hoffmann AA, Sgrὸ C, Noreikiené K, Ondrésik M, Bechsgaard JS (2011) No inbreeding depression for low temperature developmental acclimation across multiple Drosophila species. Evolution 65:3195–3201

    Article  PubMed  Google Scholar 

  • Lee RE, Elnitsky MA, Rinehart JP, Hayward SA, Sandro LH, Denlinger DL (2006) Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. J Exp Biol 209:399–406

    Article  PubMed  Google Scholar 

  • Marais E, Chown SL (2008) Beneficial acclimation and the Bogert effect. Ecol Lett 11:1027–1036

    Article  PubMed  Google Scholar 

  • Marais E, Terblanche JS, Chown SL (2009) Life stage-related differences in hardening and acclimation of thermal tolerance traits in the kelp fly, Paractora dreuxi (Diptera, Helcomyzidae). J Insect Physiol 55:336–343

    Article  PubMed  CAS  Google Scholar 

  • Nyamukondiwa C, Terblanche JS, Marshall KE, Sinclair BJ (2011) Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae). J Evol Biol 24:1927–1938

    Article  PubMed  CAS  Google Scholar 

  • Pagel, M. & Meade, A. (2008) BayesTraits. Available at: <http://www.evolution.rdg.ac.uk/BayesTraits.html>

  • Rezende EL, Santos M (2012) Comment on ‘Ecologically relevant measure of tolerance to potentially lethal temperatures’. J Exp Biol 215:702–703

    Article  PubMed  Google Scholar 

  • Roberts SP, Feder ME (1999) Natural hyperthermia and expression of the heat shock protein Hsp70 affect developmental abnormalities in Drosophila melanogaster. Oecologia 121:323–329

    Article  Google Scholar 

  • StatSoft, Inc. (2011). Statistica (data analysis software system), version 10. www.statsoft.com

  • Strachan LA, Tarnowski-Garner HE, Marshall KE, Sinclair BJ (2011) The evolution of cold tolerance in Drosophila larvae. Physiol Biochem Zool 84:43–53

    Article  PubMed  Google Scholar 

  • Terblanche JS, Hoffmann AA, Mitchell KA, Rako L, le Roux PC, Chown SL (2011) Ecologically relevant measures of tolerance to potentially lethal temperatures. J Exp Biol 214:3713–3725

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

JST and KAM are supported by FruitGro Science and the National Research Foundation. BJS is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine A. Mitchell.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, K.A., Sinclair, B.J. & Terblanche, J.S. Ontogenetic variation in cold tolerance plasticity in Drosophila: is the Bogert effect bogus?. Naturwissenschaften 100, 281–284 (2013). https://doi.org/10.1007/s00114-013-1023-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-013-1023-8

Keywords

Navigation