Skip to main content

Advertisement

Log in

Cerebrospinal fluid biomarkers for understanding multiple aspects of Alzheimer’s disease pathogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a multifactorial age-related brain disease. Numerous pathological events run forth in the brain leading to AD. There is an initial long, dormant phase before the clinical symptoms become evident. There is a need to diagnose the disease at the preclinical stage since therapeutic interventions are most likely to be effective if initiated early. Undoubtedly, the core cerebrospinal fluid (CSF) biomarkers have a good diagnostic accuracy and have been used in clinical trials as end point measures. However, looking into the multifactorial nature of AD and the overlapping pathology with other forms of dementia, it is important to integrate the core CSF biomarkers with a broader panel of other biomarkers reflecting different aspects of pathology. The review is focused upon a panel of biomarkers that relate to different aspects of AD pathology, as well as various studies that have evaluated their diagnostic potential. The panel includes markers of neurodegeneration: neurofilament light chain and visinin-like protein (VILIP-1); markers of amyloidogenesis and brain amyloidosis: apolipoproteins; markers of inflammation: YKL-40 and monocyte chemoattractant protein 1; marker of synaptic dysfunction: neurogranin. These markers can highlight on the state and stage-associated changes that occur in AD brain with disease progression. A combination of these biomarkers would not only aid in preclinical diagnosis, but would also help in identifying early brain changes during the onset of disease. Successful treatment strategies can be devised by understanding the contribution of these markers in different aspects of disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45(3):358–368

    Article  CAS  PubMed  Google Scholar 

  2. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement 7(3):280–292. https://doi.org/10.1016/j.jalz.2011.03.003

    Article  Google Scholar 

  3. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82(12):4245–4249

    Article  CAS  PubMed  Google Scholar 

  4. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (2015) Alzheimer’s disease. Nat Rev Dis Prim 1:15056. https://doi.org/10.1038/nrdp.2015.56

    Article  PubMed  Google Scholar 

  5. Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Ferris S, Reichert M, Ketter N, Nejadnik B, Guenzler V, Miloslavsky M, Wang D, Lu Y, Lull J, Tudor IC, Liu E, Grundman M, Yuen E, Black R, Brashear HR (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):322–333. https://doi.org/10.1056/NEJMoa1304839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morris JC, Selkoe DJ (2011) Recommendations for the incorporation of biomarkers into Alzheimer clinical trials: an overview. Neurobiol Aging 32(suppl 1):S1–S3. https://doi.org/10.1016/j.neurobiolaging.2011.09.005

    Article  PubMed  Google Scholar 

  7. Sperling RA, Jack CR, Aisen PS (2011) Testing the right target and the right drug at the right stage. Sci Transl Med 3 (111):111–133. https://doi.org/10.1126/scitranslmed.3002609

  8. Blennow K (2010) Biomarkers in Alzheimer’s disease drug development. Nat Med 16(11):1218–1222

    Article  CAS  PubMed  Google Scholar 

  9. Arneric SP, Batrla-Utermann R, Beckett L, Bittner T, Blennow K, Carter L, Dean R, Engelborghs S, Genius J, Gordon MF, Hitchcock J, Kaplow J, Luthman J, Meibach R, Raunig D, Romero K, Samtani MN, Savage M, Shaw L, Stephenson D, Umek RM, Vanderstichele H, Willis B, Yule S (2016) Cerebrospinal fluid biomarkers for Alzheimer’s disease: a view of the regulatory science qualification landscape from the coalition against major diseases CSF biomarker team. J Alzheimer’s Dis 55(1):19–35. https://doi.org/10.3233/jad-160573

    Article  Google Scholar 

  10. Ferreira D, Perestelo-Pérez L, Westman E, Wahlund L-O, Sarría A, Serrano-Aguilar P (2014) Meta-review of CSF core biomarkers in Alzheimer’s disease: the state-of-the-art after the new revised diagnostic criteria. Front Aging Neurosci 6:47

    PubMed  PubMed Central  Google Scholar 

  11. Jack CR, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, Hampel H, Jagust WJ, Johnson KA, Knopman DS, Petersen RC, Scheltens P, Sperling RA, Dubois B (2016) A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87(5):539–547. https://doi.org/10.1212/wnl.0000000000002923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hampel H, Frank R, Broich K, Teipel SJ, Katz RG, Hardy J, Herholz K, Bokde ALW, Jessen F, Hoessler YC, Sanhai WR, Zetterberg H, Woodcock J, Blennow K (2010) Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 9(7):560–574

    Article  CAS  PubMed  Google Scholar 

  13. Johnson KA, Fox NC, Sperling RA, Klunk WE (2012) Brain imaging in Alzheimer disease. Cold Spring Harbor Perspect Med 2(4):a006213

    Article  CAS  Google Scholar 

  14. Fishman RA (1992) Cerebrospinal fluid in diseases of the nervous system. WB Saunders Company, Philadelphia

  15. Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L (2006) Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. https://doi.org/10.1016/s1474-4422(06)70355-6

  16. Ashton NJ, Scholl M, Heurling K, Gkanatsiou E, Portelius E, Hoglund K, Brinkmalm G, Hye A, Blennow K, Zetterberg H (2018) Update on biomarkers for amyloid pathology in Alzheimer’s disease. Biomark Med 12(7):799–812. https://doi.org/10.2217/bmm-2017-0433

    Article  CAS  PubMed  Google Scholar 

  17. Sato C, Barthelemy NR, Mawuenyega KG, Patterson BW, Gordon BA, Jockel-Balsarotti J, Sullivan M, Crisp MJ, Kasten T, Kirmess KM, Kanaan NM, Yarasheski KE, Baker-Nigh A, Benzinger TLS, Miller TM, Karch CM, Bateman RJ (2018) Tau kinetics in neurons and the human central nervous system. Neuron 98(4):861–864. https://doi.org/10.1016/j.neuron.2018.04.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, DeKosky ST, Gauthier S, Selkoe D, Bateman R (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13(6):614–629

    Article  PubMed  Google Scholar 

  19. Jack CR, Albert M, Knopman DS, McKhann GM, Sperling RA, Carillo M, Thies W, Phelps CH (2011) Introduction to revised criteria for the diagnosis of Alzheimer’s disease: National Institute on Aging and the Alzheimer Association Workgroups. Alzheimer’s Dement 7(3):257–262. https://doi.org/10.1016/j.jalz.2011.03.004

    Article  Google Scholar 

  20. Blennow K, Wallin A, Agren H, Spenger C, Siegfried J, Vanmechelen E (1995) Tau protein in cerebrospinal fluid: a biochemical marker for axonal degeneration in Alzheimer disease? Mol Chem Neuropathol 26(3):231–245. https://doi.org/10.1007/bf02815140

    Article  CAS  PubMed  Google Scholar 

  21. Motter R, Vigo-Pelfrey C, Kholodenko D, Barbour R, Johnson-Wood K, Galasko D, Chang L, Miller B, Clark C, Green R et al (1995) Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol 38(4):643–648. https://doi.org/10.1002/ana.410380413

    Article  CAS  PubMed  Google Scholar 

  22. Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2(10):605–613

    Article  CAS  PubMed  Google Scholar 

  23. Perrin RJ, Fagan AM, Holtzman DM (2009) Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 461(7266):916–922. https://doi.org/10.1038/nature08538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou B, Teramukai S, Yoshimura K, Fukushima M (2009) Validity of cerebrospinal fluid biomarkers as endpoints in early-phase clinical trials for Alzheimer’s disease. J Alzheimer’s Dis 18(1):89–102. https://doi.org/10.3233/jad-2009-1124

    Article  CAS  Google Scholar 

  25. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128. https://doi.org/10.1016/s1474-4422(09)70299-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kester MI, van der Vlies AE, Blankenstein MA, Pijnenburg YA, van Elk EJ, Scheltens P, van der Flier WM (2009) CSF biomarkers predict rate of cognitive decline in Alzheimer disease. Neurology 73(17):1353–1358. https://doi.org/10.1212/WNL.0b013e3181bd8271

    Article  CAS  PubMed  Google Scholar 

  27. Toledo JB, Xie SX, Trojanowski JQ, Shaw LM (2013) Longitudinal change in CSF Tau and Abeta biomarkers for up to 48 months in ADNI. Acta Neuropathol 126(5):659–670. https://doi.org/10.1007/s00401-013-1151-4

    Article  CAS  PubMed  Google Scholar 

  28. Blennow K, Zetterberg H, Fagan AM (2012) Fluid biomarkers in Alzheimer disease. Cold Spring Harb Perspect Med 2(9):a006221. https://doi.org/10.1101/cshperspect.a006221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW, Zotova E, Nicoll JA (2008) Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet (London, England) 372(9634):216–223. https://doi.org/10.1016/s0140-6736(08)61075-2

    Article  CAS  Google Scholar 

  30. Blennow K, Mattsson N, Schöll M, Hansson O, Zetterberg H (2015) Amyloid biomarkers in Alzheimer’s disease. Trends Pharmacol Sci 36(5):297–309. https://doi.org/10.1016/j.tips.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  31. Mattsson N, Insel PS, Donohue M, Landau S, Jagust WJ, Shaw LM, Trojanowski JQ, Zetterberg H, Blennow K, Weiner MW (2015) Independent information from cerebrospinal fluid amyloid-beta and florbetapir imaging in Alzheimer’s disease. Brain 138(Pt 3):772–783. https://doi.org/10.1093/brain/awu367

    Article  PubMed  Google Scholar 

  32. Palmqvist S, Mattsson N, Hansson O (2016) Cerebrospinal fluid analysis detects cerebral amyloid-beta accumulation earlier than positron emission tomography. Brain 139(Pt 4):1226–1236. https://doi.org/10.1093/brain/aww015

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, LaRossa GN, Spinner ML, Klunk WE, Mathis CA, DeKosky ST, Morris JC, Holtzman DM (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59(3):512–519. https://doi.org/10.1002/ana.20730

    Article  CAS  PubMed  Google Scholar 

  34. Leuzy A, Carter SF, Chiotis K, Almkvist O, Wall A, Nordberg A (2015) Concordance and diagnostic accuracy of [11C]PIB PET and cerebrospinal fluid biomarkers in a sample of patients with mild cognitive impairment and Alzheimer’s disease. J Alzheimer’s Dis 45(4):1077–1088. https://doi.org/10.3233/jad-142952

    Article  CAS  Google Scholar 

  35. Hsueh C-T, Liu D, Wang H (2013) Novel biomarkers for diagnosis, prognosis, targeted therapy and clinical trials. Biomark Res 1(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  36. Counts SE, Ikonomovic MD, Mercado N, Vega IE, Mufson EJ (2016) Biomarkers for the early detection and progression of Alzheimer’s disease. Neurotherapeutics 1–19

  37. Fagan AM, Perrin RJ (2012) Upcoming candidate cerebrospinal fluid biomarkers of Alzheimer’s disease. Biomark Med 6(4):455–476. https://doi.org/10.2217/bmm.12.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science (New York, NY) 240(4852):622–630

    Article  CAS  Google Scholar 

  39. Pitas RE, Boyles JK, Lee SH, Foss D, Mahley RW (1987) Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochem Biophys Acta 917(1):148–161

    Article  CAS  PubMed  Google Scholar 

  40. Stone DJ, Rozovsky I, Morgan TE, Anderson CP, Hajian H, Finch CE (1997) Astrocytes and microglia respond to estrogen with increased apoE mRNA in vivo and in vitro. Exp Neurol 143(2):313–318. https://doi.org/10.1006/exnr.1996.6360

    Article  CAS  PubMed  Google Scholar 

  41. DeMattos RB, Brendza RP, Heuser JE, Kierson M, Cirrito JR, Fryer J, Sullivan PM, Fagan AM, Han X, Holtzman DM (2001) Purification and characterization of astrocyte-secreted apolipoprotein E and J-containing lipoproteins from wild-type and human apoE transgenic mice. Neurochem Int 39(5–6):415–425. https://doi.org/10.1016/S0197-0186(01)00049-3

    Article  CAS  PubMed  Google Scholar 

  42. Leduc V, Jasmin-Belanger S, Poirier J (2010) APOE and cholesterol homeostasis in Alzheimer’s disease. Trends Mol Med 16(10):469–477. https://doi.org/10.1016/j.molmed.2010.07.008

    Article  CAS  PubMed  Google Scholar 

  43. Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF, Schjeide BMM, Hooli B, DiVito J, Ionita I, Jiang H, Laird N, Moscarillo T, Ohlsen KL, Elliott K, Wang X, Hu-Lince D, Ryder M, Murphy A, Wagner SL, Blacker D, Becker KD, Tanzi RE (2008) Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet 83(5):623–632. https://doi.org/10.1016/j.ajhg.2008.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Coon KD, Myers AJ, Craig DW, Webster JA, Pearson JV, Lince DH, Zismann VL, Beach TG, Leung D, Bryden L, Halperin RF, Marlowe L, Kaleem M, Walker DG, Ravid R, Heward CB, Rogers J, Papassotiropoulos A, Reiman EM, Hardy J, Stephan DA (2007) A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry 68(4):613–618

    Article  CAS  PubMed  Google Scholar 

  45. Poirier J, Hess M, May PC, Finch CE (1991) Astrocytic apolipoprotein E mRNA and GFAP mRNA in hippocampus after entorhinal cortex lesioning. Brain Res Mol Brain Res 11(2):97–106

    Article  CAS  PubMed  Google Scholar 

  46. Gong JS, Kobayashi M, Hayashi H, Zou K, Sawamura N, Fujita SC, Yanagisawa K, Michikawa M (2002) Apolipoprotein E (ApoE) isoform-dependent lipid release from astrocytes prepared from human ApoE3 and ApoE4 knock-in mice. J Biol Chem 277(33):29919–29926. https://doi.org/10.1074/jbc.M203934200

    Article  CAS  PubMed  Google Scholar 

  47. Michikawa M, Fan QW, Isobe I, Yanagisawa K (2000) Apolipoprotein E exhibits isoform-specific promotion of lipid efflux from astrocytes and neurons in culture. J Neurochem 74(3):1008–1016

    Article  CAS  PubMed  Google Scholar 

  48. Tokuda T, Calero M, Matsubara E, Vidal R, Kumar A, Permanne B, Zlokovic B, Smith JD, Ladu MJ, Rostagno A, Frangione B, Ghiso J (2000) Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer’s amyloid beta peptides. Biochem J 348(Pt 2):359–365

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bu G (2009) Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 10(5):333–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Holtzman DM, Herz J, Bu G (2012) Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harbor Perspect Med 2(3):a006312. https://doi.org/10.1101/cshperspect.a006312

    Article  CAS  Google Scholar 

  51. Jiang Q, Lee CD, Mandrekar S, Wilkinson B, Cramer P, Zelcer N, Mann K, Lamb B, Willson TM, Collins JL (2008) ApoE promotes the proteolytic degradation of Aβ. Neuron 58(5):681–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, Holtzman DM, Zlokovic BV (2008) apoE isoform-specific disruption of amyloid β peptide clearance from mouse brain. J Clin Invest 118(12):4002-4013

  53. Nishitsuji K, Hosono T, Nakamura T, Bu G, Michikawa M (2011) Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood–brain-barrier model. J Biol Chem M111:225532

    Google Scholar 

  54. Ma J, Yee A, Brewer HB Jr, Das S, Potter H (1994) Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature 372(6501):92–94. https://doi.org/10.1038/372092a0

    Article  CAS  PubMed  Google Scholar 

  55. Bales KR, Verina T, Cummins DJ, Du Y, Dodel RC, Saura J, Fishman CE, DeLong CA, Piccardo P, Petegnief V, Ghetti B, Paul SM (1999) Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer’s disease. Proc Natl Acad Sci 96(26):15233–15238. https://doi.org/10.1073/pnas.96.26.15233

    Article  CAS  PubMed  Google Scholar 

  56. Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, Fagan AM, Morris JC, Mawuenyega KG, Cruchaga C, Goate AM, Bales KR, Paul SM, Bateman RJ, Holtzman DM (2011) Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci Transl Med 3(89):89ra57. https://doi.org/10.1126/scitranslmed.3002156

  57. Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, Tsai RM, Spina S, Grinberg LT, Rojas JC, Gallardo G, Wang K, Roh J, Robinson G, Finn MB, Jiang H, Sullivan PM, Baufeld C, Wood MW, Sutphen C, McCue L, Xiong C, Del-Aguila JL, Morris JC, Cruchaga C, Fagan AM, Miller BL, Boxer AL, Seeley WW, Butovsky O, Barres BA, Paul SM, Holtzman DM (2017) ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549(7673):523–527. https://doi.org/10.1038/nature24016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tesseur I, Van Dorpe J, Spittaels K, Van den Haute C, Moechars D, Van Leuven F (2000) Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in the brains of transgenic mice. Am J Pathol 156(3):951–964. https://doi.org/10.1016/s0002-9440(10)64963-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shi Y, Holtzman DM (2018) Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol. https://doi.org/10.1038/s41577-018-0051-1

  60. Roheim PS, Carey M, Forte T, Vega GL (1979) Apolipoproteins in human cerebrospinal fluid. Proc Natl Acad Sci 76(9):4646–4649

    Article  CAS  PubMed  Google Scholar 

  61. Zhang J, Sokal I, Peskind ER, Quinn JF, Jankovic J, Kenney C, Chung KA, Millard SP, Nutt JG, Montine TJ (2008) CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am J Clin Pathol 129(4):526–529. https://doi.org/10.1309/w01y0b808emeh12l

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Blennow K, Hesse C, Fredman P (1994) Cerebrospinal fluid apolipoprotein E is reduced in Alzheimer’s disease. NeuroReport 5(18):2534–2536

    Article  CAS  PubMed  Google Scholar 

  63. Landen M, Hesse C, Fredman P, Regland B, Wallin A, Blennow K (1996) Apolipoprotein E in cerebrospinal fluid from patients with Alzheimer’s disease and other forms of dementia is reduced but without any correlation to the apoE4 isoform. Dementia (Basel, Switzerland) 7(5):273–278

    CAS  Google Scholar 

  64. Pirttilä T, Koivisto K, Mehta PD, Reinikainen K, Kim KS, Kilkku O, Heinonen E, Soininen H, Riekkinen P Sr, Wisniewski HM (1998) Longitudinal study of cerebrospinal fluid amyloid proteins and apolipoprotein E in patients with probable Alzheimer’s disease. Neurosci Lett 249(1):21–24

    Article  PubMed  Google Scholar 

  65. Lindh M, Blomberg M, Jensen M, Basun H, Lannfelt L, Engvall B, Scharnagel H, Marz W, Wahlund LO, Cowburn RF (1997) Cerebrospinal fluid apolipoprotein E (apoE) levels in Alzheimer’s disease patients are increased at follow up and show a correlation with levels of tau protein. Neurosci Lett 229(2):85–88

    Article  CAS  PubMed  Google Scholar 

  66. Fukuyama R, Mizuno T, Mori S, Yanagisawa K, Nakajima K, Fushiki S (2000) Age-dependent decline in the apolipoprotein E level in cerebrospinal fluid from control subjects and its increase in cerebrospinal fluid from patients with Alzheimer’s disease. Eur Neurol 43(3):161–169

    Article  CAS  PubMed  Google Scholar 

  67. Merched A, Blain H, Visvikis S, Herbeth B, Jeandel C, Siest G (1997) Cerebrospinal fluid apolipoprotein E level is increased in late-onset Alzheimer’s disease. J Neurol Sci 145(1):33–39

    Article  CAS  PubMed  Google Scholar 

  68. Hesse C, Larsson H, Fredman P, Minthon L, Andreasen N, Davidsson P, Blennow K (2000) Measurement of apolipoprotein E (apoE) in cerebrospinal fluid. Neurochem Res 25(4):511–517

    Article  CAS  PubMed  Google Scholar 

  69. Martinez-Morillo E, Hansson O, Atagi Y, Bu G, Minthon L, Diamandis EP, Nielsen HM (2014) Total apolipoprotein E levels and specific isoform composition in cerebrospinal fluid and plasma from Alzheimer’s disease patients and controls. Acta Neuropathol 127(5):633–643. https://doi.org/10.1007/s00401-014-1266-2

    Article  CAS  PubMed  Google Scholar 

  70. Strittmatter WJ, Saunders AM, Goedert M, Weisgraber KH, Dong L-M, Jakes R, Huang DY, Pericak-Vance M, Schmechel D, Roses AD (1994) Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: implications for Alzheimer disease. Proc Natl Acad Sci 91(23):11183–11186

    Article  CAS  PubMed  Google Scholar 

  71. van Harten AC, Jongbloed W, Teunissen CE, Scheltens P, Veerhuis R, van der Flier WM (2017) CSF ApoE predicts clinical progression in nondemented APOEε4 carriers. Neurobiol Aging 57:186–194. https://doi.org/10.1016/j.neurobiolaging.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  72. Johansson P, Almqvist EG, Bjerke M, Wallin A, Johansson JO, Andreasson U, Blennow K, Zetterberg H, Svensson J (2017) Reduced cerebrospinal fluid concentration of apolipoprotein A-I in patients with Alzheimer’s disease. J Alzheimer’s Dis 59(3):1017–1026. https://doi.org/10.3233/jad-170226

    Article  CAS  Google Scholar 

  73. Rezeli M, Zetterberg H, Blennow K, Brinkmalm A, Laurell T, Hansson O, Marko-Varga G (2015) Quantification of total apolipoprotein E and its specific isoforms in cerebrospinal fluid and blood in Alzheimer’s disease and other neurodegenerative diseases. EuPA Open Proteomics 8:137–143. https://doi.org/10.1016/j.euprot.2015.07.012

    Article  CAS  Google Scholar 

  74. Richens JL, Vere KA, Light RA, Soria D, Garibaldi J, Smith AD, Warden D, Wilcock G, Bajaj N, Morgan K, O’Shea P (2014) Practical detection of a definitive biomarker panel for Alzheimer’s disease; comparisons between matched plasma and cerebrospinal fluid. Int J Mol Epidemiol Genet 5(2):53–70

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Toledo JB, Da X, Weiner MW, Wolk DA, Xie SX, Arnold SE, Davatzikos C, Shaw LM, Trojanowski JQ (2014) CSF Apo-E levels associate with cognitive decline and MRI changes. Acta Neuropathol 127(5):621–632. https://doi.org/10.1007/s00401-013-1236-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Perrin RJ, Craig-Schapiro R, Malone JP, Shah AR, Gilmore P, Davis AE, Roe CM, Peskind ER, Li G, Galasko DR, Clark CM, Quinn JF, Kaye JA, Morris JC, Holtzman DM, Townsend RR, Fagan AM (2011) Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer’s disease. PLoS ONE 6(1):e16032. https://doi.org/10.1371/journal.pone.0016032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nuutinen T, Suuronen T, Kauppinen A, Salminen A (2009) Clusterin: a forgotten player in Alzheimer’s disease. Brain Res Rev 61(2):89–104. https://doi.org/10.1016/j.brainresrev.2009.05.007

    Article  CAS  PubMed  Google Scholar 

  78. Humphreys DT, Carver JA, Easterbrook-Smith SB, Wilson MR (1999) Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274(11):6875–6881. https://doi.org/10.1074/jbc.274.11.6875

    Article  CAS  PubMed  Google Scholar 

  79. De Silva HV, Harmony JAK, Stuart WD, Gil CM, Robbins J (1990) Apolipoprotein J: structure and tissue distribution. Biochemistry 29(22):5380–5389. https://doi.org/10.1021/bi00474a025

    Article  PubMed  Google Scholar 

  80. Jun G, Naj AC, Beecham GW et al (2010) Meta-analysis confirms CR1, CLU, and PICALM as alzheimer disease risk loci and reveals interactions with apoe genotypes. Arch Neurol 67(12):1473–1484. https://doi.org/10.1001/archneurol.2010.201

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bettens K, Brouwers N, Engelborghs S, Lambert J-C, Rogaeva E, Vandenberghe R, Le Bastard N, Pasquier F, Vermeulen S, Van Dongen J (2012) Both common variations and rare non-synonymous substitutions and small insertion/deletions in CLU are associated with increased Alzheimer risk. Mol Neurodegener 7(1):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. McGeer PL, Kawamata T, Walker DG (1992) Distribution of clusterin in Alzheimer brain tissue. Brain Res 579(2):337–341. https://doi.org/10.1016/0006-8993(92)90071-G

    Article  CAS  PubMed  Google Scholar 

  83. Matsubara E, Soto C, Governale S, Frangione B, Ghiso J (1996) Apolipoprotein J and Alzheimer’s amyloid beta solubility. Biochem J 316(Pt 2):671–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Calero M, Rostagno A, Matsubara E, Zlokovic B, Frangione B, Ghiso J (2000) Apolipoprotein J (clusterin) and Alzheimer’s disease. Microsc Res Tech 50(4):305–315. https://doi.org/10.1002/1097-0029(20000815)50:4%3c305:aid-jemt10%3e3.0.co;2-l

    Article  CAS  PubMed  Google Scholar 

  85. Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R, Zlokovic BV (2007) Transport pathways for clearance of human Alzheimer’s amyloid β-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 27(5):909–918

    Article  CAS  PubMed  Google Scholar 

  86. Qi X-M, Wang C, Chu X-K, Li G, Ma J-F (2018) Intraventricular infusion of clusterin ameliorated cognition and pathology in Tg6799 model of Alzheimer’s disease. BMC Neurosci 19(1):2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Wang P, Chen K, Gu Y, Guo Q, Hong Z, Zhao Q (2017) β-Amyloid upregulates intracellular clusterin but not secretory clusterin in primary cultured neurons and APP mice. Curr Alzheimer Res 14(11):1207–1214. https://doi.org/10.2174/1567205014666170531080948

    Article  CAS  PubMed  Google Scholar 

  88. Lidström AM, Bogdanovic N, Hesse C, Volkman I, Davidsson P, Blennow K (1998) Clusterin (apolipoprotein J) protein levels are increased in hippocampus and in frontal cortex in Alzheimer’s disease. Exp Neurol 154(2):511–521. https://doi.org/10.1006/exnr.1998.6892

    Article  PubMed  Google Scholar 

  89. Miners JS, Clarke P, Love S (2016) Clusterin levels are increased in Alzheimer’s disease and influence the regional distribution of Abeta. Brain Pathol (Zurich, Switzerland). https://doi.org/10.1111/bpa.12392

  90. DeMattos RB, Cirrito JR, Parsadanian M, May PC, O’Dell MA, Taylor JW, Harmony JAK, Aronow BJ, Bales KR, Paul SM, Holtzman DM (2004) ApoE and clusterin cooperatively suppress Aβ levels and deposition: evidence that ApoE regulates extracellular Aβ metabolism in vivo. Neuron 41(2):193–202. https://doi.org/10.1016/S0896-6273(03)00850-X

    Article  CAS  PubMed  Google Scholar 

  91. Viard I, Wehrli P, Jornot L, Bullani R, Vechietti J-L, French LE, Schifferli JA, Tschopp J (1999) Clusterin gene expression mediates resistance to apoptotic cell death induced by heat shock and oxidative stress. J Investig Dermatol 112(3):290–296. https://doi.org/10.1046/j.1523-1747.1999.00531.x

    Article  CAS  PubMed  Google Scholar 

  92. Wolter KG, Hsu Y-T, Smith CL, Nechushtan A, Xi X-G, Youle RJ (1997) Movement of bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139(5):1281–1292. https://doi.org/10.1083/jcb.139.5.1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang H, Kim JK, Edwards CA, Xu Z, Taichman R, Wang C-Y (2005) Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol 7:909. https://doi.org/10.1038/ncb1291. https://www.nature.com/articles/ncb1291#supplementary-information

  94. Shannan B, Seifert M, Boothman D, Tilgen W, Reichrath J (2006) Clusterin and DNA repair: a new function in cancer for a key player in apoptosis and cell cycle control. J Mol Histol 37(5–7):183–188

    Article  CAS  PubMed  Google Scholar 

  95. Zwain IH, Grima J, Cheng CY (1994) Regulation of clusterin secretion and mRNA expression in astrocytes by cytokines. Mol Cell Neurosci 5(3):229–237. https://doi.org/10.1006/mcne.1994.1027

    Article  CAS  PubMed  Google Scholar 

  96. Kirszbaum L, Bozas S, Walker I (1992) SP-40, 40, a protein involved in the control of the complement pathway, possesses a unique array of disulphide bridges. FEBS Lett 297(1–2):70–76

    Article  CAS  PubMed  Google Scholar 

  97. Wu Z-C, Yu J-T, Li Y, Tan L (2012) Clusterin in Alzheimer’s disease. Adv Clin Chem 56:155

    Article  CAS  PubMed  Google Scholar 

  98. Santilli G, Aronow BJ, Sala A (2003) Essential requirement of apolipoprotein J (clusterin) signaling for IκB expression and regulation of NF-κB activity. J Biol Chem 278(40):38214–38219

    Article  CAS  PubMed  Google Scholar 

  99. Deming Y, Xia J, Cai Y, Lord J, Holmans P, Bertelsen S, Holtzman D, Morris JC, Bales K, Pickering EH, Kauwe J, Goate A, Cruchaga C (2016) A potential endophenotype for Alzheimer’s disease: cerebrospinal fluid clusterin. Neurobiol Aging 37:208.e201–208.e209. https://doi.org/10.1016/j.neurobiolaging.2015.09.009

    Article  CAS  Google Scholar 

  100. Jongbloed W, Herrebout MA, Blankenstein MA, Veerhuis R (2014) Quantification of clusterin in paired cerebrospinal fluid and plasma samples. Ann Clin Biochem 51(Pt 5):557–567. https://doi.org/10.1177/0004563213503456

    Article  CAS  PubMed  Google Scholar 

  101. Nilselid AM, Davidsson P, Nagga K, Andreasen N, Fredman P, Blennow K (2006) Clusterin in cerebrospinal fluid: analysis of carbohydrates and quantification of native and glycosylated forms. Neurochem Int 48(8):718–728. https://doi.org/10.1016/j.neuint.2005.12.005

    Article  CAS  PubMed  Google Scholar 

  102. Desikan RS, Thompson WK, Holland D, Hess CP, Brewer JB, Zetterberg H, Blennow K, Andreassen OA, McEvoy LK, Hyman BT, Dale AM (2014) The role of clusterin in amyloid-beta-associated neurodegeneration. JAMA Neurol 71(2):180–187. https://doi.org/10.1001/jamaneurol.2013.4560

    Article  PubMed  PubMed Central  Google Scholar 

  103. Prikrylova Vranova H, Henykova E, Mares J, Kaiserova M, Mensikova K, Vastik M, Hlustik P, Zapletalova J, Strnad M, Stejskal D, Kanovsky P (2016) Clusterin CSF levels in differential diagnosis of neurodegenerative disorders. J Neurol Sci 361:117–121. https://doi.org/10.1016/j.jns.2015.12.023

    Article  CAS  PubMed  Google Scholar 

  104. Sihlbom C, Davidsson P, Sjogren M, Wahlund LO, Nilsson CL (2008) Structural and quantitative comparison of cerebrospinal fluid glycoproteins in Alzheimer’s disease patients and healthy individuals. Neurochem Res 33(7):1332–1340. https://doi.org/10.1007/s11064-008-9588-x

    Article  CAS  PubMed  Google Scholar 

  105. Finehout EJ, Franck Z, Choe LH, Relkin N, Lee KH (2007) Cerebrospinal fluid proteomic biomarkers for Alzheimer’s disease. Ann Neurol 61(2):120–129. https://doi.org/10.1002/ana.21038

    Article  CAS  PubMed  Google Scholar 

  106. Lidstrom AM, Hesse C, Rosengren L, Fredman P, Davidsson P, Blennow K (2001) Normal levels of clusterin in cerebrospinal fluid in Alzheimer’s disease, and no change after acute ischemic stroke. J Alzheimer’s Dis 3(5):435–442

    Article  CAS  Google Scholar 

  107. Sakono M, Zako T (2010) Amyloid oligomers: formation and toxicity of Abeta oligomers. FEBS J 277(6):1348–1358. https://doi.org/10.1111/j.1742-4658.2010.07568.x

    Article  CAS  PubMed  Google Scholar 

  108. Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27(4):796–807. https://doi.org/10.1523/jneurosci.3501-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535. https://doi.org/10.1038/416535a

    Article  CAS  PubMed  Google Scholar 

  110. Savage MJ, Kalinina J, Wolfe A, Tugusheva K, Korn R, Cash-Mason T, Maxwell JW, Hatcher NG, Haugabook SJ, Wu G, Howell BJ, Renger JJ, Shughrue PJ, McCampbell A (2014) A sensitive abeta oligomer assay discriminates Alzheimer’s and aged control cerebrospinal fluid. J Neurosci 34(8):2884–2897. https://doi.org/10.1523/jneurosci.1675-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sancesario GM, Cencioni MT, Esposito Z, Borsellino G, Nuccetelli M, Martorana A, Battistini L, Sorge R, Spalletta G, Ferrazzoli D, Bernardi G, Bernardini S, Sancesario G (2012) The load of amyloid-beta oligomers is decreased in the cerebrospinal fluid of Alzheimer’s disease patients. J Alzheimer’s Dis 31(4):865–878. https://doi.org/10.3233/jad-2012-120211

    Article  CAS  Google Scholar 

  112. Santos AN, Ewers M, Minthon L, Simm A, Silber RE, Blennow K, Prvulovic D, Hansson O, Hampel H (2012) Amyloid-beta oligomers in cerebrospinal fluid are associated with cognitive decline in patients with Alzheimer’s disease. J Alzheimer’s Dis 29(1):171–176. https://doi.org/10.3233/jad-2012-111361

    Article  CAS  Google Scholar 

  113. Kazakova MH, Sarafian VS (2009) YKL-40—a novel biomarker in clinical practice? Folia Med 51(1):5–14

    Google Scholar 

  114. Volck B, Price PA, Johansen JS, Sorensen O, Benfield TL, Nielsen HJ, Calafat J, Borregaard N (1998) YKL-40, a mammalian member of the chitinase family, is a matrix protein of specific granules in human neutrophils. Proc Assoc Am Phys 110(4):351–360

    CAS  PubMed  Google Scholar 

  115. Johansen JS (2006) Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer. Dan Med Bull 53(2):172–209

    CAS  PubMed  Google Scholar 

  116. Johansen JS, Williamson MK, Rice JS, Price PA (1992) Identification of proteins secreted by human osteoblastic cells in culture. J Bone Miner Res 7(5):501–512. https://doi.org/10.1002/jbmr.5650070506

    Article  CAS  PubMed  Google Scholar 

  117. Bonneh-Barkay D, Wang G, Starkey A, Hamilton RL, Wiley CA (2010) In vivo CHI3L1 (YKL-40) expression in astrocytes in acute and chronic neurological diseases. J Neuroinflamm 7(1):1–8. https://doi.org/10.1186/1742-2094-7-34

    Article  CAS  Google Scholar 

  118. Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE, Vitek MP (2006) Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflamm 3:27. https://doi.org/10.1186/1742-2094-3-27

    Article  CAS  Google Scholar 

  119. Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines. Sci World J 2012:756357. https://doi.org/10.1100/2012/756357

    Article  CAS  Google Scholar 

  120. Sheng JG, Mrak RE, Griffin WS (1997) Neuritic plaque evolution in Alzheimer’s disease is accompanied by transition of activated microglia from primed to enlarged to phagocytic forms. Acta Neuropathol 94(1):1–5

    Article  CAS  PubMed  Google Scholar 

  121. Lee CY, Landreth GE (2010) The role of microglia in amyloid clearance from the AD brain. J Neural Transm (Vienna, Austria: 1996) 117(8):949–960. https://doi.org/10.1007/s00702-010-0433-4

  122. Neniskyte U, Neher JJ, Brown GC (2011) Neuronal death induced by nanomolar amyloid beta is mediated by primary phagocytosis of neurons by microglia. J Biol Chem 286(46):39904–39913. https://doi.org/10.1074/jbc.M111.267583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mrak RE, Griffin WS (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26(3):349–354. https://doi.org/10.1016/j.neurobiolaging.2004.05.010

    Article  CAS  PubMed  Google Scholar 

  124. Janelidze S, Hertze J, Zetterberg H, Landqvist Waldo M, Santillo A, Blennow K, Hansson O (2016) Cerebrospinal fluid neurogranin and YKL-40 as biomarkers of Alzheimer’s disease. Ann Clin Transl Neurol 3(1):12–20. https://doi.org/10.1002/acn3.266

    Article  CAS  PubMed  Google Scholar 

  125. Wennström M, Surova Y, Hall S, Nilsson C, Minthon L, Hansson O, Nielsen HM (2015) The inflammatory marker YKL-40 is elevated in cerebrospinal fluid from patients with Alzheimer’s but not Parkinson’s disease or dementia with Lewy bodies. PLoS ONE 10(8):e0135458. https://doi.org/10.1371/journal.pone.0135458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Antonell A, Mansilla A, Rami L, Lladó A, Iranzo A, Olives J, Balasa M, Sanchez-Valle R, Molinuevo JL (2014) Cerebrospinal fluid level of YKL-40 protein in preclinical and prodromal Alzheimer’s disease. J Alzheimer’s Dis 42(3):901–908

    Article  CAS  Google Scholar 

  127. Sutphen CL, Jasielec MS, Shah AR et al (2015) Longitudinal cerebrospinal fluid biomarker changes in preclinical alzheimer disease during middle age. JAMA Neurol 72(9):1029–1042. https://doi.org/10.1001/jamaneurol.2015.1285

    Article  PubMed  PubMed Central  Google Scholar 

  128. Hoglund K, Kern S, Zettergren A, Borjesson-Hansson A, Zetterberg H, Skoog I, Blennow K (2017) Preclinical amyloid pathology biomarker positivity: effects on tau pathology and neurodegeneration. Transl Psychiatry 7(1):e995. https://doi.org/10.1038/tp.2016.252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gispert JD, Monté GC, Suárez-Calvet M, Falcon C, Tucholka A, Rojas S, Rami L, Sánchez-Valle R, Lladó A, Kleinberger G, Haass C, Molinuevo JL (2017) The APOE ε4 genotype modulates CSF YKL-40 levels and their structural brain correlates in the continuum of Alzheimer’s disease but not those of sTREM2. Alzheimer’s Dement Diagn Assess Dis Monit 6:50–59. https://doi.org/10.1016/j.dadm.2016.12.002

    Article  Google Scholar 

  130. Gispert JD, Monté GC, Falcon C, Tucholka A, Rojas S, Sánchez-Valle R, Antonell A, Lladó A, Rami L, Molinuevo JL (2016) CSF YKL-40 and pTau181 are related to different cerebral morphometric patterns in early AD. Neurobiol Aging 38:47–55

    Article  CAS  PubMed  Google Scholar 

  131. Hellwig K, Kvartsberg H, Portelius E, Andreasson U, Oberstein TJ, Lewczuk P, Blennow K, Kornhuber J, Maler JM, Zetterberg H, Spitzer P (2015) Neurogranin and YKL-40: independent markers of synaptic degeneration and neuroinflammation in Alzheimer’s disease. Alzheimer’s Res Ther 7:74. https://doi.org/10.1186/s13195-015-0161-y

    Article  CAS  Google Scholar 

  132. Kester MI, Teunissen CE, Sutphen C, Herries EM, Ladenson JH, Xiong C, Scheltens P, van der Flier WM, Morris JC, Holtzman DM, Fagan AM (2015) Cerebrospinal fluid VILIP-1 and YKL-40, candidate biomarkers to diagnose, predict and monitor Alzheimer’s disease in a memory clinic cohort. Alzheimer’s Res Ther 7:59. https://doi.org/10.1186/s13195-015-0142-1

    Article  CAS  Google Scholar 

  133. Alcolea D, Vilaplana E, Pegueroles J, Montal V, Sánchez-Juan P, González-Suárez A, Pozueta A, Rodríguez-Rodríguez E, Bartrés-Faz D, Vidal-Piñeiro D (2015) Relationship between cortical thickness and cerebrospinal fluid YKL-40 in predementia stages of Alzheimer’s disease. Neurobiol Aging 36(6):2018–2023

    Article  CAS  PubMed  Google Scholar 

  134. Graves DT, Jiang Y (1995) Chemokines, a family of chemotactic cytokines. Crit Rev Oral Biol Med 6(2):109–118

    Article  CAS  PubMed  Google Scholar 

  135. Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354(6):610–621. https://doi.org/10.1056/NEJMra052723

    Article  CAS  PubMed  Google Scholar 

  136. Kato S, Gondo T, Hoshii Y, Takahashi M, Yamada M, Ishihara T (1998) Confocal observation of senile plaques in Alzheimer’s disease: senile plaque morphology and relationship between senile plaques and astrocytes. Pathol Int 48(5):332–340

    Article  CAS  PubMed  Google Scholar 

  137. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, Silverstein SC, Husemann J (2003) Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nat Med 9:453. https://doi.org/10.1038/nm838

    Article  CAS  PubMed  Google Scholar 

  138. El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13(4):432–438. https://doi.org/10.1038/nm1555

    Article  CAS  PubMed  Google Scholar 

  139. Blasko I, Stampfer-Kountchev M, Robatscher P, Veerhuis R, Eikelenboom P, Grubeck-Loebenstein B (2004) How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: the role of microglia and astrocytes. Aging Cell 3(4):169–176. https://doi.org/10.1111/j.1474-9728.2004.00101.x

    Article  CAS  PubMed  Google Scholar 

  140. Forloni G, Mangiarotti F, Angeretti N, Lucca E, De Simoni MG (1997) Beta-amyloid fragment potentiates IL-6 and TNF-alpha secretion by LPS in astrocytes but not in microglia. Cytokine 9(10):759–762. https://doi.org/10.1006/cyto.1997.0232

    Article  CAS  PubMed  Google Scholar 

  141. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, Silverstein SC, Husemann J (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 9(4):453–457. https://doi.org/10.1038/nm838

    Article  CAS  PubMed  Google Scholar 

  142. Westin K, Buchhave P, Nielsen H, Minthon L, Janciauskiene S, Hansson O (2012) CCL2 is associated with a faster rate of cognitive decline during early stages of Alzheimer’s disease. PLoS One 7(1):e30525. https://doi.org/10.1371/journal.pone.0030525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Galimberti D, Schoonenboom N, Scheltens P et al (2006) Intrathecal chemokine synthesis in mild cognitive impairment and Alzheimer disease. Arch Neurol 63(4):538–543. https://doi.org/10.1001/archneur.63.4.538

    Article  PubMed  Google Scholar 

  144. Blasko I, Lederer W, Oberbauer H, Walch T, Kemmler G, Hinterhuber H, Marksteiner J, Humpel C (2006) Measurement of thirteen biological markers in CSF of patients with Alzheimer’s disease and other dementias. Dement Geriatr Cogn Disord 21(1):9–15. https://doi.org/10.1159/000089137

    Article  PubMed  Google Scholar 

  145. Janelidze S, Mattsson N, Stomrud E, Lindberg O, Palmqvist S, Zetterberg H, Blennow K, Hansson O (2018) CSF biomarkers of neuroinflammation and cerebrovascular dysfunction in early Alzheimer disease. Neurology 91(9):e867–e877. https://doi.org/10.1212/wnl.0000000000006082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rosén C, Andersson CH, Andreasson U, Molinuevo JL, Bjerke M, Rami L, Lladó A, Blennow K, Zetterberg H (2014) Increased levels of chitotriosidase and YKL-40 in cerebrospinal fluid from patients with Alzheimer’s disease. Dement Geriatr Cogn Disord Extra 4(2):297–304

    Article  Google Scholar 

  147. Correa JD, Starling D, Teixeira AL, Caramelli P, Silva TA (2011) Chemokines in CSF of Alzheimer’s disease patients. Arq Neuropsiquiatr 69(3):455–459

    Article  PubMed  Google Scholar 

  148. Choi C, Jeong JH, Jang JS, Choi K, Lee J, Kwon J, Choi KG, Lee JS, Kang SW (2008) Multiplex analysis of cytokines in the serum and cerebrospinal fluid of patients with Alzheimer’s disease by color-coded bead technology. J Clin Neurol (Seoul, Korea) 4(2):84–88. https://doi.org/10.3988/jcn.2008.4.2.84

    Article  Google Scholar 

  149. Gerendasy DD, Sutcliffe JG (1997) RC3/neurogranin, a postsynaptic calpacitin for setting the response threshold to calcium influxes. Mol Neurobiol 15(2):131–163

    Article  CAS  PubMed  Google Scholar 

  150. Hayashi Y (2009) Long-term potentiation: two pathways meet at neurogranin. EMBO J 28(19):2859–2860. https://doi.org/10.1038/emboj.2009.273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27(5):457–464. https://doi.org/10.1002/ana.410270502

    Article  CAS  PubMed  Google Scholar 

  152. Bertoni-Freddari C, Fattoretti P, Casoli T, Caselli U, Meier-Ruge W (1996) Deterioration threshold of synaptic morphology in aging and senile dementia of Alzheimer’s type. Anal Quant Cytol Histol (The International Academy of Cytology and American Society of Cytology) 18(3):209–213

    CAS  Google Scholar 

  153. Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68(18):1501–1508. https://doi.org/10.1212/01.wnl.0000260698.46517.8f

    Article  CAS  PubMed  Google Scholar 

  154. Masliah E, Mallory M, Hansen L, DeTeresa R, Alford M, Terry R (1994) Synaptic and neuritic alterations during the progression of Alzheimer’s disease. Neurosci Lett 174(1):67–72

    Article  CAS  PubMed  Google Scholar 

  155. Fyfe I (2015) Alzheimer disease: neurogranin in the CSF signals early Alzheimer disease and predicts disease progression. Nat Rev Neurol 11(11):609. https://doi.org/10.1038/nrneurol.2015.178

    Article  CAS  PubMed  Google Scholar 

  156. Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW Jr, Morris JC (2001) Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 56(1):127–129

    Article  CAS  PubMed  Google Scholar 

  157. Reddy PH, Mani G, Park BS, Jacques J, Murdoch G, Whetsell W Jr, Kaye J, Manczak M (2005) Differential loss of synaptic proteins in Alzheimer’s disease: implications for synaptic dysfunction. J Alzheimer’s Dis 7(2):103–117 (discussion 173–180)

    Article  CAS  Google Scholar 

  158. Kubota Y, Putkey JA, Waxham MN (2007) Neurogranin controls the spatiotemporal pattern of postsynaptic Ca2+/CaM signaling. Biophys J 93(11):3848–3859. https://doi.org/10.1529/biophysj.107.106849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Huang K-P, Huang FL, Jäger T, Li J, Reymann KG, Balschun D (2004) Neurogranin/RC3 enhances long-term potentiation and learning by promoting calcium-mediated signaling. J Neurosci 24(47):10660–10669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mons N, Enderlin V, Jaffard R, Higueret P (2001) Selective age-related changes in the PKC-sensitive, calmodulin-binding protein, neurogranin, in the mouse brain. J Neurochem 79(4):859–867

    Article  CAS  PubMed  Google Scholar 

  161. Bereczki E, Francis PT, Howlett D, Pereira JB, Hoglund K, Bogstedt A, Cedazo-Minguez A, Baek JH, Hortobagyi T, Attems J, Ballard C, Aarsland D (2016) Synaptic proteins predict cognitive decline in Alzheimer’s disease and Lewy body dementia. Alzheimer’s Dement 12(11):1149–1158. https://doi.org/10.1016/j.jalz.2016.04.005

    Article  Google Scholar 

  162. Portelius E, Zetterberg H, Skillback T, Tornqvist U, Andreasson U, Trojanowski JQ, Weiner MW, Shaw LM, Mattsson N, Blennow K (2015) Cerebrospinal fluid neurogranin: relation to cognition and neurodegeneration in Alzheimer’s disease. Brain 138(Pt 11):3373–3385. https://doi.org/10.1093/brain/awv267

    Article  PubMed  PubMed Central  Google Scholar 

  163. Kvartsberg H, Duits FH, Ingelsson M, Andreasen N, Ohrfelt A, Andersson K, Brinkmalm G, Lannfelt L, Minthon L, Hansson O, Andreasson U, Teunissen CE, Scheltens P, Van der Flier WM, Zetterberg H, Portelius E, Blennow K (2015) Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer’s disease. Alzheimer’s Dement 11(10):1180–1190. https://doi.org/10.1016/j.jalz.2014.10.009

    Article  Google Scholar 

  164. Kester MI, Teunissen CE, Crimmins DL et al (2015) Neurogranin as a cerebrospinal fluid biomarker for synaptic loss in symptomatic Alzheimer disease. JAMA Neurol 72(11):1275–1280. https://doi.org/10.1001/jamaneurol.2015.1867

    Article  PubMed  PubMed Central  Google Scholar 

  165. Tarawneh R, D’Angelo G, Crimmins D, Herries E, Griest T, Fagan AM, Zipfel GJ, Ladenson JH, Morris JC, Holtzman DM (2016) Diagnostic and prognostic utility of the synaptic marker neurogranin in Alzheimer disease. JAMA Neurol 73(5):561–571. https://doi.org/10.1001/jamaneurol.2016.0086

    Article  PubMed  PubMed Central  Google Scholar 

  166. Wellington H, Paterson RW, Portelius E, Tornqvist U, Magdalinou N, Fox NC, Blennow K, Schott JM, Zetterberg H (2016) Increased CSF neurogranin concentration is specific to Alzheimer disease. Neurology 86(9):829–835. https://doi.org/10.1212/wnl.0000000000002423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Portelius E, Olsson B, Hoglund K, Cullen NC, Kvartsberg H, Andreasson U, Zetterberg H, Sandelius A, Shaw LM, Lee VMY, Irwin DJ, Grossman M, Weintraub D, Chen-Plotkin A, Wolk DA, McCluskey L, Elman L, McBride J, Toledo JB, Trojanowski JQ, Blennow K (2018) Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology. Acta Neuropathol 136(3):363–376. https://doi.org/10.1007/s00401-018-1851-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Mattsson N, Insel PS, Palmqvist S, Portelius E, Zetterberg H, Weiner M, Blennow K, Hansson O (2016) Cerebrospinal fluid tau, neurogranin, and neurofilament light in Alzheimer’s disease. EMBO Mol Med 8(10):1184–1196. https://doi.org/10.15252/emmm.201606540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sanfilippo C, Forlenza O, Zetterberg H, Blennow K (2016) Increased neurogranin concentrations in cerebrospinal fluid of Alzheimer’s disease and in mild cognitive impairment due to AD. J Neural Transm (Vienna, Austria: 1996) 123(12):1443–1447. https://doi.org/10.1007/s00702-016-1597-3

  170. De Vos A, Struyfs H, Jacobs D, Fransen E, Klewansky T, De Roeck E, Robberecht C, Van Broeckhoven C, Duyckaerts C, Engelborghs S, Vanmechelen E (2016) The cerebrospinal fluid neurogranin/BACE1 ratio is a potential correlate of cognitive decline in Alzheimer’s disease. J Alzheimer’s Dis 53(4):1523–1538. https://doi.org/10.3233/jad-160227

    Article  Google Scholar 

  171. Thorsell A, Bjerke M, Gobom J, Brunhage E, Vanmechelen E, Andreasen N, Hansson O, Minthon L, Zetterberg H, Blennow K (2010) Neurogranin in cerebrospinal fluid as a marker of synaptic degeneration in Alzheimer’s disease. Brain Res 1362:13–22. https://doi.org/10.1016/j.brainres.2010.09.073

    Article  CAS  PubMed  Google Scholar 

  172. Bouchon A, Dietrich J, Colonna M (2000) Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol (Baltimore, MD: 1950) 164(10):4991–4995

  173. Colonna M (2003) TREMs in the immune system and beyond. Nat Rev Immunol 3(6):445–453. https://doi.org/10.1038/nri1106

    Article  CAS  PubMed  Google Scholar 

  174. Schmid CD, Sautkulis LN, Danielson PE, Cooper J, Hasel KW, Hilbush BS, Sutcliffe JG, Carson MJ (2002) Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. J Neurochem 83(6):1309–1320. https://doi.org/10.1046/j.1471-4159.2002.01243.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hsieh CL, Koike M, Spusta SC, Niemi EC, Yenari M, Nakamura MC, Seaman WE (2009) A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J Neurochem 109(4):1144–1156. https://doi.org/10.1111/j.1471-4159.2009.06042.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Takahashi K, Rochford CDP, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201(4):647–657. https://doi.org/10.1084/jem.20041611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE, Lanier LL (2006) Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol (Baltimore, MD: 1950) 177(4):2051–2055

  178. Frank S, Burbach GJ, Bonin M, Walter M, Streit W, Bechmann I, Deller T (2008) TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia 56(13):1438–1447. https://doi.org/10.1002/glia.20710

    Article  PubMed  Google Scholar 

  179. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368(2):107–116. https://doi.org/10.1056/NEJMoa1211103

    Article  CAS  PubMed  Google Scholar 

  180. Jin SC, Benitez BA, Karch CM, Cooper B, Skorupa T, Carrell D, Norton JB, Hsu S, Harari O, Cai Y, Bertelsen S, Goate AM, Cruchaga C (2014) Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum Mol Genet 23(21):5838–5846. https://doi.org/10.1093/hmg/ddu277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JSK, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert J-C, Amouyel P, Goate A, Rademakers R, Morgan K, Powell J, St. George-Hyslop P, Singleton A, Hardy J (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368(2):117–127. https://doi.org/10.1056/NEJMoa1211851

    Article  CAS  PubMed  Google Scholar 

  182. Slattery CF, Beck JA, Harper L, Adamson G, Abdi Z, Uphill J, Campbell T, Druyeh R, Mahoney CJ, Rohrer JD, Kenny J, Lowe J, Leung KK, Barnes J, Clegg SL, Blair M, Nicholas JM, Guerreiro RJ, Rowe JB, Ponto C, Zerr I, Kretzschmar H, Gambetti P, Crutch SJ, Warren JD, Rossor MN, Fox NC, Collinge J, Schott JM, Mead S (2014) R47H TREM2 variant increases risk of typical early-onset Alzheimer’s disease but not of prion or frontotemporal dementia. Alzheimer’s Dement 10(6):602.e604–608.e604. https://doi.org/10.1016/j.jalz.2014.05.1751

    Article  Google Scholar 

  183. Bertram L (2015) The role of TREM2 R47H as a risk factor for Alzheimer’s disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson’s disease. Alzheimer’s Dement 1:10

    Google Scholar 

  184. Kleinberger G, Yamanishi Y, Suarez-Calvet M, Czirr E, Lohmann E, Cuyvers E, Struyfs H, Pettkus N, Wenninger-Weinzierl A, Mazaheri F, Tahirovic S, Lleo A, Alcolea D, Fortea J, Willem M, Lammich S, Molinuevo JL, Sanchez-Valle R, Antonell A, Ramirez A, Heneka MT, Sleegers K, van der Zee J, Martin JJ, Engelborghs S, Demirtas-Tatlidede A, Zetterberg H, Van Broeckhoven C, Gurvit H, Wyss-Coray T, Hardy J, Colonna M, Haass C (2014) TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med 6(243):243ra286. https://doi.org/10.1126/scitranslmed.3009093

  185. Colonna M, Wang Y (2016) TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci 17(4):201–207. https://doi.org/10.1038/nrn.2016.7

    Article  CAS  PubMed  Google Scholar 

  186. Piccio L, Buonsanti C, Cella M, Tassi I, Schmidt RE, Fenoglio C, Rinker J 2nd, Naismith RT, Panina-Bordignon P, Passini N, Galimberti D, Scarpini E, Colonna M, Cross AH (2008) Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain 131(Pt 11):3081–3091. https://doi.org/10.1093/brain/awn217

    Article  PubMed  PubMed Central  Google Scholar 

  187. Piccio L, Deming Y, Del-Aguila JL, Ghezzi L, Holtzman DM, Fagan AM, Fenoglio C, Galimberti D, Borroni B, Cruchaga C (2016) Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status. Acta Neuropathol 131(6):925–933. https://doi.org/10.1007/s00401-016-1533-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhong L, Chen X-F, Wang T, Wang Z, Liao C, Wang Z, Huang R, Wang D, Li X, Wu L (2017) Soluble TREM2 induces inflammatory responses and enhances microglial survival. J Exp Med 214(3):597–607

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, Gilfillan S, Krishnan GM, Sudhakar S, Zinselmeyer BH, Holtzman DM, Cirrito JR, Colonna M (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160(6):1061–1071. https://doi.org/10.1016/j.cell.2015.01.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Suarez-Calvet M, Araque Caballero MA, Kleinberger G, Bateman RJ, Fagan AM, Morris JC, Levin J, Danek A, Ewers M, Haass C (2016) Early changes in CSF sTREM2 in dominantly inherited Alzheimer’s disease occur after amyloid deposition and neuronal injury. Sci Transl Med 8(369):369ra178. https://doi.org/10.1126/scitranslmed.aag1767

  191. Schindler SE, Holtzman DM (2016) CSF sTREM2: marking the tipping point between preclinical AD and dementia? EMBO Mol Med 8(5):437–438. https://doi.org/10.15252/emmm.201606245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Gispert JD, Suarez-Calvet M, Monte GC, Tucholka A, Falcon C, Rojas S, Rami L, Sanchez-Valle R, Llado A, Kleinberger G, Haass C, Molinuevo JL (2016) Cerebrospinal fluid sTREM2 levels are associated with gray matter volume increases and reduced diffusivity in early Alzheimer’s disease. Alzheimer’s Dement 12(12):1259–1272. https://doi.org/10.1016/j.jalz.2016.06.005

    Article  Google Scholar 

  193. Heslegrave A, Heywood W, Paterson R, Magdalinou N, Svensson J, Johansson P, Ohrfelt A, Blennow K, Hardy J, Schott J, Mills K, Zetterberg H (2016) Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease. Mol Neurodegener 11:3. https://doi.org/10.1186/s13024-016-0071-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Suarez-Calvet M, Kleinberger G, Araque Caballero MA, Brendel M, Rominger A, Alcolea D, Fortea J, Lleo A, Blesa R, Gispert JD, Sanchez-Valle R, Antonell A, Rami L, Molinuevo JL, Brosseron F, Traschutz A, Heneka MT, Struyfs H, Engelborghs S, Sleegers K, Van Broeckhoven C, Zetterberg H, Nellgard B, Blennow K, Crispin A, Ewers M, Haass C (2016) sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol Med 8(5):466–476. https://doi.org/10.15252/emmm.201506123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Henjum K, Almdahl IS, Arskog V, Minthon L, Hansson O, Fladby T, Nilsson LN (2016) Cerebrospinal fluid soluble TREM2 in aging and Alzheimer’s disease. Alzheimer’s Res Ther 8(1):17. https://doi.org/10.1186/s13195-016-0182-1

    Article  CAS  Google Scholar 

  196. Yoshimoto K, Tanaka T, Somiya K, Tsuji R, Okamoto F, Kawamura K, Ohkaru Y, Asayama K, Ishii H (1995) Human heart-type cytoplasmic fatty acid-binding protein as an indicator of acute myocardial infarction. Heart Vessels 10(6):304–309

    Article  CAS  PubMed  Google Scholar 

  197. Janssen CI, Kiliaan AJ (2014) Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res 53:1–17. https://doi.org/10.1016/j.plipres.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  198. Veerkamp JH, Zimmerman AW (2001) Fatty acid-binding proteins of nervous tissue. J Mol Neurosci 16(2–3):133–142. https://doi.org/10.1385/jmn:16:2-3:133 (discussion 151–137)

  199. Hooijmans CR, Van der Zee CEEM, Dederen PJ, Brouwer KM, Reijmer YD, van Groen T, Broersen LM, Lütjohann D, Heerschap A, Kiliaan AJ (2009) DHA and cholesterol containing diets influence Alzheimer-like pathology, cognition and cerebral vasculature in APPswe/PS1dE9 mice. Neurobiol Dis 33(3):482–498. https://doi.org/10.1016/j.nbd.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  200. Tan Y, Ren H, Shi Z, Yao X, He C, Kang J-X, Wan J-B, Li P, Yuan T-F, Su H (2016) Endogenous docosahexaenoic acid (DHA) prevents Aβ1–42 oligomer-induced neuronal injury. Mol Neurobiol 53(5):3146–3153. https://doi.org/10.1007/s12035-015-9224-0

    Article  CAS  PubMed  Google Scholar 

  201. Cheon MS, Kim SH, Fountoulakis M, Lubec G (2003) Heart type fatty acid binding protein (H-FABP) is decreased in brains of patients with Down syndrome and Alzheimer’s disease. J Neural Transm Suppl 67:225–234

    Article  CAS  Google Scholar 

  202. Pelsers MMAL, Hermens WT, Glatz JFC (2005) Fatty acid-binding proteins as plasma markers of tissue injury. Clin Chim Acta 352(1):15–35. https://doi.org/10.1016/j.cccn.2004.09.001

    Article  CAS  PubMed  Google Scholar 

  203. Glatz JFC (1998) Fatty acid-binding protein as a plasma marker for the early detection of myocardial injury. In: Kaski JC, Holt DW (eds) Myocardial damage: early detection by novel biochemical markers. Springer Netherlands, Dordrecht, pp 73–84. https://doi.org/10.1007/978-94-017-2380-0_7

  204. Shioda N, Yamamoto Y, Watanabe M, Binas B, Owada Y, Fukunaga K (2010) Heart-type fatty acid binding protein regulates dopamine D2 receptor function in mouse brain. J Neurosci 30(8):3146–3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Shioda N, Yabuki Y, Kobayashi Y, Onozato M, Owada Y, Fukunaga K (2014) FABP3 protein promotes α-synuclein oligomerization associated with 1-methyl-1, 2, 3, 6-tetrahydropiridine-induced neurotoxicity. J Biol Chem 289(27):18957–18965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Martorana A, Koch G (2014) Is dopamine involved in Alzheimer’s disease? Front Aging Neurosci. https://doi.org/10.3389/fnagi.2014.00252

  207. Desikan RS, Thompson WK, Holland D, Hess CP, Brewer JB, Zetterberg H, Blennow K, Andreassen OA, McEvoy LK, Hyman BT, Dale AM (2013) Heart fatty acid binding protein and Abeta-associated Alzheimer’s neurodegeneration. Mol Neurodegener 8:39. https://doi.org/10.1186/1750-1326-8-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Guo LH, Alexopoulos P, Perneczky R (2013) Heart-type fatty acid binding protein and vascular endothelial growth factor: cerebrospinal fluid biomarker candidates for Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 263(7):553–560. https://doi.org/10.1007/s00406-013-0405-4

    Article  PubMed  Google Scholar 

  209. Chiasserini D, Parnetti L, Andreasson U, Zetterberg H, Giannandrea D, Calabresi P, Blennow K (2010) CSF levels of heart fatty acid binding protein are altered during early phases of Alzheimer’s disease. J Alzheimer’s Dis 22(4):1281–1288. https://doi.org/10.3233/jad-2010-101293

    Article  CAS  Google Scholar 

  210. Bjerke M, Kern S, Blennow K, Zetterberg H, Waern M, Borjesson-Hanson A, Ostling S, Kern J, Skoog I (2016) Cerebrospinal fluid fatty acid-binding protein 3 is related to dementia development in a population-based sample of older adult women followed for 8 years. J Alzheimer’s Dis 49(3):733–741. https://doi.org/10.3233/jad-150525

    Article  CAS  Google Scholar 

  211. Biscetti L, Eusebi P, Salvadori N, Frattini G, Simoni S, Mollenhauer B, Engelborghs S, Tambasco N, Calabresi P, Parnetti L, Chiasserini D (2016) Combination of cerebrospinal fluid h-fabp and core Alzheimer’s Disease biomarkers improves the differential diagnosis of neurodegenerative disorders. Alzheimer’s Dement 12(7 suppl):P201–P202. http://dx.doi.org/10.1016/j.jalz.2016.06.353

  212. Chiasserini D, Biscetti L, Eusebi P, Farotti L, Tambasco N, Calabresi P, Parnetti L (2016) CSF levels of heart fatty acid binding protein in Parkinson’s and Alzheimer’s disease. Parkinsonism Relat Disord 22(Suppl 2):e33. https://doi.org/10.1016/j.parkreldis.2015.10.037

    Article  Google Scholar 

  213. Yuan A, Rao MV, Veeranna Nixon RA (2012) Neurofilaments at a glance. J Cell Sci 125(14):3257–3263. https://doi.org/10.1242/jcs.104729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Yan Y, Jensen K, Brown A (2007) The polypeptide composition of moving and stationary neurofilaments in cultured sympathetic neurons. Cell Motil Cytoskelet 64(4):299

    Article  CAS  Google Scholar 

  215. Wagner OI, Rammensee S, Korde N, Wen Q, Leterrier J-F, Janmey PA (2007) Softness, strength and self-repair in intermediate filament networks. Exp Cell Res 313(10):2228–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Fernandez-Martos CM, King AE, Atkinson RAK, Woodhouse A, Vickers JC (2015) Neurofilament light gene deletion exacerbates amyloid, dystrophic neurite, and synaptic pathology in the APP/PS1 transgenic model of Alzheimer’s disease. Neurobiol Aging 36(10):2757–2767. https://doi.org/10.1016/j.neurobiolaging.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  217. Sjögren M, Blomberg M, Jonsson M, Wahlund LO, Edman Å, Lind K, Rosengren L, Blennow K, Wallin A (2001) Neurofilament protein in cerebrospinal fluid: a marker of white matter changes. J Neurosci Res 66(3):510–516. https://doi.org/10.1002/jnr.1242

    Article  PubMed  Google Scholar 

  218. Skillback T, Farahmand B, Bartlett JW, Rosen C, Mattsson N, Nagga K, Kilander L, Religa D, Wimo A, Winblad B, Rosengren L, Schott JM, Blennow K, Eriksdotter M, Zetterberg H (2014) CSF neurofilament light differs in neurodegenerative diseases and predicts severity and survival. Neurology 83(21):1945–1953. https://doi.org/10.1212/wnl.0000000000001015

    Article  PubMed  Google Scholar 

  219. Idland AV, Sala-Llonch R, Borza T, Watne LO, Wyller TB, Braekhus A, Zetterberg H, Blennow K, Walhovd KB, Fjell AM (2017) CSF neurofilament light levels predict hippocampal atrophy in cognitively healthy older adults. Neurobiol Aging 49:138–144. https://doi.org/10.1016/j.neurobiolaging.2016.09.012

    Article  CAS  PubMed  Google Scholar 

  220. Zetterberg H, Skillbäck T, Mattsson N et al (2016) Association of cerebrospinal fluid neurofilament light concentration with alzheimer disease progression. JAMA Neurol 73(1):60–67. https://doi.org/10.1001/jamaneurol.2015.3037

    Article  PubMed  PubMed Central  Google Scholar 

  221. De Jong D, Jansen RWMM, Pijnenburg YAL, van Geel WJA, Borm GF, Kremer HPH, Verbeek MM (2007) CSF neurofilament proteins in the differential diagnosis of dementia. J Neurol Neurosurg Psychiatry 78(9):936–938. https://doi.org/10.1136/jnnp.2006.107326

    Article  PubMed  PubMed Central  Google Scholar 

  222. Scherling CS, Hall T, Berisha F, Klepac K, Karydas A, Coppola G, Kramer JH, Rabinovici G, Ahlijanian M, Miller BL, Seeley W, Grinberg LT, Rosen H, Meredith J Jr, Boxer AL (2014) Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration. Ann Neurol 75(1):116–126. https://doi.org/10.1002/ana.24052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Rosengren LE, Karlsson J-E, Sjögren M, Blennow K, Wallin A (1999) Neurofilament protein levels in CSF are increased in dementia. Neurology 52(5):1090. https://doi.org/10.1212/wnl.52.5.1090

    Article  CAS  PubMed  Google Scholar 

  224. Burgoyne RD, Weiss JL (2001) The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 353(1):1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Groblewska M, Muszynski P, Wojtulewska-Supron A, Kulczynska-Przybik A, Mroczko B (2015) The role of visinin-like protein-1 in the pathophysiology of Alzheimer’s disease. J Alzheimer’s Dis 47(1):17–32. https://doi.org/10.3233/jad-150060

    Article  CAS  Google Scholar 

  226. Bernstein H-G, Baumann B, Danos P, Diekmann S, Bogerts B, Gundelfinger ED, Braunewell K-H (1999) Regional and cellular distribution of neural visinin-like protein immunoreactivities (VILIP-1 and VILIP-3) in human brain. J Neurocytol 28(8):655–662. https://doi.org/10.1023/a:1007056731551

    Article  CAS  PubMed  Google Scholar 

  227. Spilker C, Dresbach T, Braunewell KH (2002) Reversible translocation and activity-dependent localization of the calcium-myristoyl switch protein VILIP-1 to different membrane compartments in living hippocampal neurons. J Neurosci 22(17):7331–7339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Spilker C, Gundelfinger ED, Braunewell KH (2002) Evidence for different functional properties of the neuronal calcium sensor proteins VILIP-1 and VILIP-3: from subcellular localization to cellular function. Biochim Biophys Acta 1600(1–2):118–127

    Article  CAS  PubMed  Google Scholar 

  229. Marambaud P, Dreses-Werringloer U, Vingtdeux V (2009) Calcium signaling in neurodegeneration. Mol Neurodegener 4:20. https://doi.org/10.1186/1750-1326-4-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Arispe N, Pollard HB, Rojas E (1993) Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes. Proc Natl Acad Sci USA 90(22):10573–10577

    Article  CAS  PubMed  Google Scholar 

  231. Braunewell KH (2012) The visinin-like proteins VILIP-1 and VILIP-3 in Alzheimer’s disease-old wine in new bottles. Front Mol Neurosci 5:20. https://doi.org/10.3389/fnmol.2012.00020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Braunewell K, Riederer P, Spilker C, Gundelfinger ED, Bogerts B, Bernstein HG (2001) Abnormal localization of two neuronal calcium sensor proteins, visinin-like proteins (vilips)-1 and -3, in neocortical brain areas of Alzheimer disease patients. Dement Geriatr Cogn Disord 12(2):110–116

    Article  CAS  PubMed  Google Scholar 

  233. Price JL, Ko AI, Wade MJ, Tsou SK, McKeel DW, Morris JC (2001) Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol 58(9):1395–1402

    Article  CAS  PubMed  Google Scholar 

  234. Gomez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16(14):4491–4500

    Article  CAS  PubMed  Google Scholar 

  235. Kirkwood CM, MacDonald ML, Schempf TA, Vatsavayi AV, Ikonomovic MD, Koppel JL, Ding Y, Sun M, Kofler JK, Lopez OL, Yates NA, Sweet RA (2016) Altered levels of Visinin-like protein 1 correspond to regional neuronal loss in Alzheimer disease and frontotemporal lobar degeneration. J Neuropathol Exp Neurol. https://doi.org/10.1093/jnen/nlv018

  236. Schnurra I, Bernstein HG, Riederer P, Braunewell KH (2001) The neuronal calcium sensor protein VILIP-1 is associated with amyloid plaques and extracellular tangles in Alzheimer’s disease and promotes cell death and tau phosphorylation in vitro: a link between calcium sensors and Alzheimer’s disease? Neurobiol Dis 8(5):900–909. https://doi.org/10.1006/nbdi.2001.0432

    Article  CAS  PubMed  Google Scholar 

  237. Lee JM, Blennow K, Andreasen N, Laterza O, Modur V, Olander J, Gao F, Ohlendorf M, Ladenson JH (2008) The brain injury biomarker VLP-1 is increased in the cerebrospinal fluid of Alzheimer disease patients. Clin Chem 54(10):1617–1623. https://doi.org/10.1373/clinchem.2008.104497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Babic Leko M, Borovecki F, Dejanovic N, Hof PR, Simic G (2016) Predictive value of cerebrospinal fluid Visinin-like protein-1 levels for Alzheimer’s disease early detection and differential diagnosis in patients with mild cognitive impairment. J Alzheimer’s Dis 50(3):765–778. https://doi.org/10.3233/jad-150705

    Article  CAS  Google Scholar 

  239. Luo X, Hou L, Shi H, Zhong X, Zhang Y, Zheng D, Tan Y, Hu G, Mu N, Chan J, Chen X, Fang Y, Wu F, He H, Ning Y (2013) CSF levels of the neuronal injury biomarker visinin-like protein-1 in Alzheimer’s disease and dementia with Lewy bodies. J Neurochem 127(5):681–690. https://doi.org/10.1111/jnc.12331

    Article  CAS  PubMed  Google Scholar 

  240. Mroczko B, Groblewska M, Zboch M, Muszynski P, Zajkowska A, Borawska R, Szmitkowski M, Kornhuber J, Lewczuk P (2015) Evaluation of visinin-like protein 1 concentrations in the cerebrospinal fluid of patients with mild cognitive impairment as a dynamic biomarker of Alzheimer’s disease. J Alzheimer’s Dis 43(3):1031–1037. https://doi.org/10.3233/jad-141050

    Article  CAS  Google Scholar 

  241. Tarawneh R, D’Angelo G, Macy E, Xiong C, Carter D, Cairns NJ, Fagan AM, Head D, Mintun MA, Ladenson JH, Lee JM, Morris JC, Holtzman DM (2011) Visinin-like protein-1: diagnostic and prognostic biomarker in Alzheimer disease. Ann Neurol 70(2):274–285. https://doi.org/10.1002/ana.22448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Tarawneh R, Head D, Allison S, Buckles V, Fagan AM, Ladenson JH, Morris JC, Holtzman DM (2015) Cerebrospinal fluid markers of neurodegeneration and rates of brain atrophy in early Alzheimer disease. JAMA Neurol 72(6):656–665. https://doi.org/10.1001/jamaneurol.2015.0202

    Article  PubMed  PubMed Central  Google Scholar 

  243. Tarawneh R, Lee JM, Ladenson JH, Morris JC, Holtzman DM (2012) CSF VILIP-1 predicts rates of cognitive decline in early Alzheimer disease. Neurology 78(10):709–719. https://doi.org/10.1212/WNL.0b013e318248e568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Melah KE, Lu SY, Hoscheidt SM, Alexander AL, Adluru N, Destiche DJ, Carlsson CM, Zetterberg H, Blennow K, Okonkwo OC, Gleason CE, Dowling NM, Bratzke LC, Rowley HA, Sager MA, Asthana S, Johnson SC, Bendlin BB (2016) Cerebrospinal fluid markers of Alzheimer’s disease pathology and microglial activation are associated with altered white matter microstructure in asymptomatic adults at risk for Alzheimer’s disease. J Alzheimer’s Dis 50(3):873–886. https://doi.org/10.3233/jad-150897

    Article  CAS  Google Scholar 

  245. Réus GZ, Fries GR, Stertz L, Badawy M, Passos IC, Barichello T, Kapczinski F, Quevedo J (2015) The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience 300:141–154. https://doi.org/10.1016/j.neuroscience.2015.05.018

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Australian Imaging, Biomarker and Lifestyle Study of Ageing (AIBL) Study Group (http://www.aibl.csiro.au) Edith Cowan University (ECU) and Deakin University. The AIBL study is a collaboration between Commonwealth Scientific and Industrial Research Organisation (CSIRO), ECU, The Florey Institute of Neuroscience and Mental Health (FINMH), National Ageing Research Institute (NARI), and Austin Health. It involves support from CogState Ltd., Hollywood Private Hospital, and Sir Charles Gairdner Hospital. The study receives funding from the National Health and Medical Research Council (NHMRC), Brightfocus Foundation USA, Dementia Australia Dementia Research Foundation (AADRF), the Dementia Collaborative Research Centres program (DCRC2), the Cooperative Research Centre (CRC) for Mental Health, the McCusker Alzheimer’s Research Foundation and Operational Infrastructure Support from the Government of Victoria. KD also thanks ECU HDR (Higher degree by research) Scholarship. KB is supported by the Torsten Söderberg foundation, Sweden. HZ is a Wallenberg Academy Fellow supported by grants from the Swedish Research Council, the European Research Council, the Olav Thon Foundation and the UK Dementia Research Institute at UCL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veer Bala Gupta.

Ethics declarations

Conflict of interest

KB has served as a consultant or at advisory boards for Alzheon, BioArctic, Biogen, Eli Lilly, Fujirebio Europe, IBL International, Merck, Novartis, Pfizer, and Roche Diagnostics, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB, a GU Ventures-based platform company at the University of Gothenburg. HZ has served at scientific advisory boards of Eli Lilly, Roche Diagnostics, Samumed, CogRx and Wave, has received travel support from Teva and is a co-founder of Brain Biomarker Solutions in Gothenburg AB, a GU Ventures-based platform company at the University of Gothenburg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, K., Blennow, K., Zetterberg, H. et al. Cerebrospinal fluid biomarkers for understanding multiple aspects of Alzheimer’s disease pathogenesis. Cell. Mol. Life Sci. 76, 1833–1863 (2019). https://doi.org/10.1007/s00018-019-03040-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03040-5

Keywords

Navigation