Skip to main content
Log in

Structural and Functional Hot Spots in Cytokine Receptors

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The activation of cytokine receptors is a stepwise process that depends on their specific interaction with cognate cytokines, the formation of oligomeric receptor complexes, and the initiation of cytoplasmic phosphorylation events. The recent determination of the structure of extracellular domains of several cytokine receptors allows comparison of their cytokine-binding surfaces. This comparison reveals a common structural framework that supports considerable diversity and adaptability of the binding surfaces that determine both the specificity and the orientation of subunits in the active receptor complex. These regions of the cytokine receptors have been targeted for the development of specific agonists and antagonists. The physical coupling of signaling intermediates to the intracellular domains of their receptors plays a major role in determining biological responses to cytokines. In this review, we focus principally on the receptors for cytokines of the granulocyte-macrophage colony-stimulating factor (GM-CSF) family and, where appropriate, compare them with related cytokine receptors. Several paradigms are beginning to emerge that focus on the ability of the extracellular portion of the cytokine receptor to recognize the appropriate cytokine and on a phosphorylated motif in the intracellular region of the GM-CSF receptor that couples to a specific signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oppenheim JJ, Feldmann M.Cytokine Reference: A Compendium of Cytokines and Other Mediators of Host Defense. New York, NY: Academic Press; 2000:855–876, 899-910.

    Google Scholar 

  2. Nishinakamura R, Miyajima A, Mee PJ, Tybulewicz VLJ, Murray R. Hematopoiesis in mice lacking the entire granulocyte-macrophage colony-stimulating factor/interleukin-3/interleukin-5 functions.Blood. 1996;88:2458–2464.

    PubMed  CAS  Google Scholar 

  3. Zhan Y, Lieschke GJ, Grail D, Dunn AR, Cheers C. Essential roles for granulocyte-macrophage colony-stimulating factor (GM-CSF) and G-CSF in the sustained hematopoietic response ofListeria monocytogenes-infected mice.Blood. 1998;91:863–869.

    PubMed  CAS  Google Scholar 

  4. Arai KI, Lee F, Miyajima A, Miyatake S, Arai N, Yokota T. Cytokines: coordinators of immune and inflammatory responses.Annu Rev Biochem. 1990;59:783–836.

    Article  CAS  PubMed  Google Scholar 

  5. Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. Interleukin 5 deficiency abolishes eosinophilia, airway hyperreactivity, and lung damage in a mouse asthma model.J Exp Med. 1996;183:195–201.

    Article  CAS  PubMed  Google Scholar 

  6. Stampfli MR, Wiley RE, Scott Neigh G, et al. GM-CSF transgene expression in the airway allows aerosolized ovalbumin to induce allergic sensitization in mice.J Clin Invest. 1998;102:1704–1714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De Vos AM, Ultsch M, Kossiakoff AA. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex.Science. 1992;255:306–312.

    Article  PubMed  Google Scholar 

  8. Syed RS, Reid SW, Li C, et al. Efficiency of signalling through cytokine receptors depends critically on receptor orientation.Nature. 1998;395:511–516.

    Article  CAS  Google Scholar 

  9. Bazan JF, McKay DB. Unravelling the structure of IL-2.Science. 1992;257:410–413.

    Article  CAS  PubMed  Google Scholar 

  10. Diederichs K, Boone T, Karplus PA. Novel fold and putative receptor binding site of granulocyte-macrophage colony-stimulating factor.Science. 1991;254:1779–1782.

    Article  CAS  PubMed  Google Scholar 

  11. Lia F, Rajotte D, Clark SC, Hoang T. A dominant negative granulocyte-macrophage colony-stimuating factor receptor alpha chain reveals the multimeric structure of the receptor complex.J Biol Chem. 1996;271:28287–28293.

    Article  CAS  PubMed  Google Scholar 

  12. Stomski FC, Sun Q, Bagley CJ, et al. Human interleukin-3 (IL-3) induces disulphide-linked receptor α and β chain heterodimerization which is required for receptor activation but not high affinity binding.Mol Cell Biol. 1996;16:3035–3046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bravo J, Heath JK. Receptor recognition by gp130 cytokines.EMBO J. 2000;19:2399–2411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bagley CJ, Woodcock JM, Stomski FC, Lopez AF. The structural and functional basis of cytokine receptor activation: lessons from the common β subunit of the granulocyte-macrophage colonystimulating factor, interleukin-3 (IL-3) and IL-5 receptors.Blood. 1997;89:1471–1482.

    PubMed  CAS  Google Scholar 

  15. Hage T, Sebald W, Reinemer P. Crystal structure of the interleukin- 4/receptor α chain complex reveals a mosaic binding interface.Cell. 1999;97:271–281.

    Article  CAS  PubMed  Google Scholar 

  16. Clackson T, Wells JA. A hot spot of binding energy in a hormonereceptor interface.Science. 1995;267:383–386.

    Article  CAS  PubMed  Google Scholar 

  17. Fuh G, Cunningham BC, Fukunaga R, Nagata S, Goeddel DV, Wells J. Rational design of potent antagonsts to the human growth hormone receptor.Science. 1992;256:1677–1680.

    Article  CAS  PubMed  Google Scholar 

  18. Middleton SA, Johnson DL, Jin R, et al. Identification of a critical ligand binding determinant of the human erythropoietin receptor: evidence for common ligand binding motifs in the cytokine receptor family.J Biol Chem. 1996;271:14045–14054.

    Article  CAS  PubMed  Google Scholar 

  19. Woodcock JM, Zacharakis B, Plaetinck G, et al. Three residues in the common β chain of the human GM-CSF, IL-3, and IL-5 receptors are essential for GM-CSF and IL-5, but not IL-3 high affinity binding and interact with Glu21 of GM-CSF.EMBO J. 1994;13:5176–5185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lock P, Metcalf D, Nicola NA. Histidine-367 of the human common beta chain of the receptor is critical for high-affinity binding of human granulocyte-macrophage colony-stimulating factor.Proc Natl Acad Sci U S A. 1994;91:252–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Woodcock JM, Bagley CJ, Zacharakis B, Lopez AF. A single tyrosine residue in the membrane-proximal domain of the GM-CSF, IL-3, and IL-5 receptor common β chain is necessary and sufficient for high affinity binding and signalling by all three ligands.J Biol Chem. 1996;271:25999–26006.

    Article  CAS  PubMed  Google Scholar 

  22. Livnah O, Stura EA, Middleton SA, Johnson DL, Jolliffe LK, Wilson IA. Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation.Science. 1999;283:987–990.

    Article  CAS  PubMed  Google Scholar 

  23. Remy I, Wilson IA, Michnick SW. Erythropoietin receptor activation by a ligand-induced conformation change.Science. 1999;283:990–993.

    Article  CAS  PubMed  Google Scholar 

  24. Livnah O, Stura EA, Johnson DL, et al. Functional mimicry of a protein hormone by a peptide agonist: the EPO receptor complex an 2.8Å.Science. 1996;273:464–471.

    Article  CAS  PubMed  Google Scholar 

  25. Matthews D, Topping R, Cass R, Giebel L. A sequential dimerization mechanism for erythropoietin receptor activation.Proc Natl Acad Sci U S A. 1996;93:9471–9476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hercus TR, Bagley CJ, Cambareri B, et al. Specific human granulocyte-macrophage colony-stimulating factor antagonists.Proc Natl Acad Sci U S A. 1994;91:5838–5842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tavernier J, Tuypens T, Verhee A, et al. Identification of receptorbinding domains on human interleukin 5 and design of an interleukin 5-derived receptor antagonist.Proc Natl Acad Sci U S A. 1995;92:5194–5198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McKinnon M, Page K, Uings IJ, et al. An interleukin 5 mutant distinguishes between 2 functional responses in human eosinophils.J Exp Med. 1997;186:121–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zurawski S, Imler J-L, Zurawski G. Partial agonist/antagonist mouse interleukin-2 proteins indicate that a third component of the receptor complex functions in signal transduction.EMBO J. 1990;9:3899–3905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Tony H, Shen B, Reusch P, Sebald W Design of human interleukin-4 antagonists inhibiting interleukin-4-dependent and interleukin-13-dependent responses in T-cells and B-cells with high efficiency.Eur J Biochem. 1994;225:659–665.

    Article  CAS  PubMed  Google Scholar 

  31. Sun Q, Jones K, McClure B, et al. Simultaneous antagonism of interleukin-5, granulocyte-macrophage colony-stimulating factor, and interleukin-3 stimulation of human eosinophils by targetting the common cytokine binding site of their receptors.Blood. 1999;1943–1951.

  32. Naranda T, Wong K, Kaufman RI, Goldstein A, Olsson L. Activation of erythropoietin receptor in the absence of hormone by a peptide that binds to a domain different from the hormone binding site.Proc Natl Acad Sci U S A. 1999;96:7569–7574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Watanabe S, Itoh T, Arai K. Roles of JAK kinases in human GM- CSF receptor signal transduction.J Allergy Clin Immunol. 1996;98:S183-S191.

    Article  CAS  PubMed  Google Scholar 

  34. Itoh T, Muto A, Watanabe S, Miyajima A, Yokota T, Arai K. Granulocyte-macrophage colony-stimulating factor provokes RAS activation and transcription of c-fos through different modes of signaling.J Biol Chem. 1996;271:7587–7592.

    Article  CAS  PubMed  Google Scholar 

  35. Porteu F, Rouyez MC, Cocault L, et al. Functional regions of the mouse thrombopoietin receptor cytoplasmic domain: evidence for a critical region which is involved in differentiation and can be complemented by erythropoietin.Mol Cell Biol. 1996;5:2473–2482.

    Article  Google Scholar 

  36. Liu R, Itoh T, Arai KI,Watanabe S. Two distinct signaling pathways downstream of Janus kinase 2 play redundant roles for antiapoptotic activity of granulocyte-macrophage colony-stimulating factor.Mol Biol Cell. 1999;11:3959–3970.

    Article  Google Scholar 

  37. Guthridge MA, Stomski FC, Thomas D, et al. Mechanism of activation of the GM-CSF, IL-3 and IL-5 family of receptors.Stem Cells. 1998;16:301–313.

    Article  CAS  PubMed  Google Scholar 

  38. De Groot RP, Coffer PJ, Koenderman L. Regulation of proliferation, differentiation and survival by the IL-3/IL-5/GM-CSF receptor family.Cell Signal. 1998;10:619–628.

    Article  PubMed  Google Scholar 

  39. Wang YD, Wong K,Wood WI. Intracellular tyrosine residues of the human growth hormone receptor are not required for the signaling of proliferation or Jak-STAT activation.J Biol Chem. 1995;270:7021–7024.

    Article  CAS  PubMed  Google Scholar 

  40. Gobert S, Porteu F, Pallu S, et al. Tyrosine phosphorylation of the erythropoietin receptor: role for differentiation and mitogenic signal transduction.Blood. 1995;86:598–606.

    PubMed  CAS  Google Scholar 

  41. Damen JE,Liu L,Wakao H,et al. The role of erythropoietin receptor tyrosine phosphorylation in erythropoietin-induced proliferation.Leukemia. 1997;11:423–425.

    PubMed  Google Scholar 

  42. Miyakawa Y, Drachman JG, Gallis B, Kaushansky A, Kaushansky K. A structure-function analysis of serine/threonine phosphorylation of the thrombopoietin receptor, c-Mpl.J Biol Chem. 2000;275:32214–32219.

    Article  CAS  PubMed  Google Scholar 

  43. Okuda K, Smith L, Griffin JD, Foster R. Signaling functions of the tyrosine residues in the βc chain of the granulocyte-macrophage colony-stimulating factor receptor.Blood. 1997;90:4759–4766.

    PubMed  CAS  Google Scholar 

  44. Itoh T, Liu R, Yokota T, Arai K-I, Watanabe S. Definition of the role of tyrosine residues of the common beta subunit regulating multiple signaling pathways of granulocyte-macrophage colonystimulating factor receptor.Mol Cell Biol. 1998;18:742–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stomski FC, Dottore M, Winnall W, et al. Identification of a 14-3-3 binding sequence in the common β chain of the GM-CSF, IL-3 and IL-5 receptor that is serine-phosphorylated by GM-CSF.Blood. 1999;94:1933–1942.

    PubMed  CAS  Google Scholar 

  46. Guthridge MA, Stomski FC, Barry EF, et al. Site-specific serine phosphorylation of the IL-3 receptor is required for hemopoietic cell survival.Mol Cell. 2000;6:99–108.

    Article  CAS  PubMed  Google Scholar 

  47. Lu PJ, Zhou X.Z., Shen M, Lu KP. Function of WW domains as phosphoserineor phosphothreonine-binding modules.Science. 1999;283:1325–1328.

    Article  CAS  PubMed  Google Scholar 

  48. Sun Z, Hsiao J, Fay DS, Stern DF. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint.Science. 1999;281:272–274.

    Article  Google Scholar 

  49. Aitken A. 14-3-3 and its possible role in co-ordinating multiple signalling pathways.Trends Cell Biol. 1996;6:341–347.

    Article  CAS  PubMed  Google Scholar 

  50. Lui D, Biekowska J, Petosa C, Collier RJ, Fu H, Liddington R. Crystal structure of the zeta isoform of the 14-3-3 protein.Nature. 1995;376:191–194.

    Article  Google Scholar 

  51. Xiao B, Smerdon SJ, Jones DH, et al. Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways.Nature. 1995;376:188–191.

    Article  CAS  PubMed  Google Scholar 

  52. Sliva D, Gu M, Zhu YX, et al. 14-3-3zeta interacts with the alphachain of human interleukin 9 receptor.Biochem J. 2000;345:741–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Toker A, Cantley LC. Signalling through the lipid products of phosphoinositide-3-OH kinase.Nature. 1997;387:673–676.

    Article  CAS  PubMed  Google Scholar 

  54. Corvera S, Czech MP. Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction.Trends Cell Biol. 1998;8:442–446.

    Article  CAS  PubMed  Google Scholar 

  55. Duronio V, Scheid MP, Ettinger S. Downstream signalling events regulated by phosphatidylinositol 3-kinase activity.Cell Signal. 1998;10:233–239.

    Article  CAS  PubMed  Google Scholar 

  56. Wymann MP, Pirola L. Structure and function of phosphoinositide 3-kinases.Biochim Biophys Acta. 1998;1436:127–150.

    Article  CAS  PubMed  Google Scholar 

  57. Songyang Z, Shoelson SE, Chaudhuri M, et al. SH2 domains recognize specific phosphopeptide sequences.Cell. 1993;72:767–778.

    Article  CAS  PubMed  Google Scholar 

  58. Kashishian A, Kazlauskas A, Cooper JA. Phosphorylation sites in the PDGF receptor with different specificities for binding GAP and PI3 kinase in vivo [published erratum appears inEMBO J. 1992 Oct;11:3809].EMBO J. 1992;11:1373–1382.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kotani K, Yonezawa K, Hara K, et al. Involvement of phosphoinositide 3-kinase in insulinor IGF-1-induced membrane ruffling.EMBO J. 1994;13:2313–2321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Gu H, Pratt JC, Burakoff SJ, Neel BG. Cloning of p97/Gab2, the major SHP2-binding protein in hematopoietic cells, reveals a novel pathway for cytokine-induced gene activation.Mol Cell. 1998;2:729–740.

    Article  CAS  PubMed  Google Scholar 

  61. He TC, Zhuang H, Jiang N,Waterfield MD,Wojchowski DM. Association of the p85 regulatory subunit of phosphatidylinositol 3- kinase with an essential erythropoietin receptor subdomain.Blood. 1993;82:3530–3538.

    PubMed  CAS  Google Scholar 

  62. Damen JE, Cutler RL, Jiao H, Yi T, Krystal G. Phosphorylation of tyrosine 503 in the erythropoietin receptor (EpR) is essential for binding the P85 subunit of phosphatidylinositol (PI) 3-kinase and for EpR-associated PI 3-kinase activity.J Biol Chem. 1995;270:23402–23408.

    Article  CAS  PubMed  Google Scholar 

  63. Verdier F, Chretien S, Billat C, Gisselbrecht S, Lacombe C, Mayeux P. Erythropoietin induces the tyrosine phosphorylation of insulin receptor substrate-2: an alternate pathway for erythropoietininduced phosphatidylinositol 3-kinase activation.J Biol Chem. 1997;272:26173–26178.

    Article  CAS  PubMed  Google Scholar 

  64. Bonnefoy-Berard N, Liu Y-C, von Willebrand M, et al. Inhibition of phosphatidylinositol 3-kinase activity by association with 14-3-3 proteins in T cells.Proc Natl Acad Sci U S A. 1995;92:10142–10146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Craparo A, Freund R, Gustafson TA. 14-3-3 (e) interacts with the insulin-like growth factor I receptor and insulin receptor substrate I in a phosphoserine-dependent manner.J Biol Chem. 1997;272:11663–11669.

    Article  CAS  PubMed  Google Scholar 

  66. Mulhern TD, Lopez AF, D’Andrea RJ, et al. The solution structure of the cytokine-binding domain of the common β-chain of the receptors for granulocyte-macrophage colony-stimulating factor, interleukin-3 and interleukin-5.J Mol Biol. 2000;297:989–1001.

    Article  CAS  PubMed  Google Scholar 

  67. Kraulis P. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures.J Appl Cryst. 1991;24:946–950.

    Article  Google Scholar 

  68. Merritt EA, Murphy MEP. Raster3D Version 2.0, a program for photorealistic molecular graphics.Acta Crystallogr D Biol Crystallogr. 1994;50:869–873.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Bagley, C.J., Woodcock, J.M., Guthridge, M.A. et al. Structural and Functional Hot Spots in Cytokine Receptors. Int J Hematol 73, 299–307 (2001). https://doi.org/10.1007/BF02981954

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02981954

Key words

Navigation