Skip to main content
Log in

Biosynthesis, cDNA and amino acid sequences of a precursor of conglutin δ, a sulphur-rich protein from Lupinus angustifolius

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The biosynthesis of conglutin δ has been studied in developing cotyledons of Lupinus angustifolius L. Precursors of conglutin δ formed the major sink for [35S]-cysteine incorporated by developing lupin cotyledons, and these precursors were rapidly sequestered into the endoplasmic reticulum. The sequence of a cDNA clone coding for one such precursor of conglutin δ was determined. The structure of the precursor polypeptide for conglutin δ predicted from the cDNA sequence contained an N-terminal leader peptide of 22 amino acids directly preceding a subunit polypeptide of M r 4520, together with a linking region of 13 amino acids and a subunit polypeptide of M r 9558 at the C-terminus. The amino acid sequence predicted from the cDNA sequence showed minor variations from that established by sequencing of the protein purified from mature dried seeds (Lilley and Inglis, 1986). These were consistent with the existence of a multi-gene family coding for conglutin δ. Comparison of the sequences of conglutin δ with those of other 2S storage proteins showed that the cysteines involved in internal disulphide bridges between the mature subunits of conglutin δ, were maintained throughout this family of proteins but that little else was conserved either at the protein or DNA level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ampe C, Van Damme J, Castro LAB, Sampaio MAM, Van Montagu M, Vandekerkhove J: The amino acid sequence of the 2S sulphur-rich proteins from seeds of Brazil nut (Bertholletia excelsa H.B.K.). Eur J Biochem 159: 597–604 (1986).

    PubMed  Google Scholar 

  2. Bhatty RS, McKenzie SL, Finlayson AJ: The proteins of rapeseed (Brassica napus L.) soluble in salt solutions. Can J Biochem 46: 1191–1197 (1968).

    PubMed  Google Scholar 

  3. Blagrove RJ, Gillespie JM: Isolation, purification and characterization of the seed globulins of Lupinus angustifolius. Aust J Plant Physiol 2: 13–27 (1975).

    Google Scholar 

  4. Borroto K, DureIII L: The globulin seed storage proteins of flowering plants are derived from two ancestral genes. Plant Mol Biol 8: 113–131 (1987).

    Google Scholar 

  5. Bowles DJ, Kauss H: Characterization, enzymatic and lectin properties of isolated membranes from Phaseolus aureus. Biochim Biophys Acta 443: 360–374 (1976).

    PubMed  Google Scholar 

  6. Chrispeels MJ, Higgins TJV, Craig S, Spencer D: Role of the endoplasmic reticulum in the synthesis of reserve proteins and the kinetics of their transport to protein bodies in developing pea cotyledons. J Cell Biol 93: 5–14 (1982).

    Article  PubMed  Google Scholar 

  7. Crouch ML, Tenbarge KM, Simon AE, Ferl R: cDNA clones for Brassica napus seed storage proteins: evidence from nucleotide sequence analysis that both subunits of napin are cleaved from a precursor polypeptide. J Mol Appl Genet 2: 273–283 (1983).

    PubMed  Google Scholar 

  8. Dayhoff MO, Schwarts RM, Orcutt BC. In: Dayhoff MD (ed) Atlas of Protein Sequence and Structure, Vol 5, Suppl 3, pp. 345–362. National Biomedical Research Foundation, Washington, DC (1979).

    Google Scholar 

  9. De Castro LAB, Lacerada Z, Aramayo RA, Sampaio MJAM, Ganders ES: Evidence for a precursor molecule of Brazil nut 2S seed proteins from biosynthesis and cDNA analysis. Mol Gen Gent 206: 338–343 (1987).

    Google Scholar 

  10. Ericson ML, Rodin J, Lenman M, Glimelius K, Josefsson L-G, Rask L: Structure of the rapessed 1.7S storage protein, napin, and its precursor. J Biol Chem 261: 14576–14581 (1986).

    PubMed  Google Scholar 

  11. Gatehouse JA, Croy RRD, Boulter D: The synthesis and structure of pea storage proteins. CRC Crit Rev Pl Sci 1: 287–314 (1984).

    Google Scholar 

  12. Gatehouse JA, Gilroy J, Hoque MS, Croy RRD: Purification, properties and amino acid sequence of a low Mr abundant seed protein from pea (Pisum sativum L.). Biochem J 255: 239–247 (1985).

    Google Scholar 

  13. Gayler KR, Wachsmann F, Kolivas S, Nott R, Johnson ED: Isolation and characterization of protein bodies in Lupinus angustifolius. Plant Physiol 91: 1425–1431 (1989).

    Google Scholar 

  14. Gerritsen TH: Lupin seed proteins: IV. Amino acid composition of the globulins from Lupinus angustifolius and Lupinus luteus. Biochim Biophys Acta 22: 269–273 (1956).

    Article  PubMed  Google Scholar 

  15. Grunstein M, Hogness DS: Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci USA 72: 3961–3965 (1975).

    PubMed  Google Scholar 

  16. Gubler U, Hoffman BJ: A simple and very efficient method for generating cDNA libraries. Gene 25: 263–269 (1983).

    Article  PubMed  Google Scholar 

  17. Harris N, Croy RRD: The major albumin from pea (Pisum sativum L). Localization and immunocytochemistry. Planta 165: 522–526 (1985).

    Google Scholar 

  18. Higgins TJV, Beach LR, Spencer D, Chandler PM, Randall PJ, Blagrove RJ, Kortt AA, Guthrie RE: cDNA and protein sequence of a major pea seed albumin (PA 2: M r∼26000). Plant Mol Biol 8: 37–45 (1987).

    Google Scholar 

  19. Higgins TJV, Chandler PM, Randall PJ, Spencer D, Beach LR, Blagrove RJ, Kortt AA, Inglis AS: Gene structure, protein structure, and regulation of the synthesis of a sulphur-rich protein in pea seeds. J Biol Chem 261: 11124–11130 (1986).

    PubMed  Google Scholar 

  20. Johnson ED, Knight J, Gayler KR: Biosynthesis and processing of legumin-like storage proteins in Lupinus angustifolius (lupin). Biochem J 232: 673–679 (1985).

    PubMed  Google Scholar 

  21. Joubert FJ: Lupin seed proteins: II. A physicochemical study of the proteins from yellow lupin seed (Lupinus luteus). Biochim Biophys Acta 17: 444–445 (1955).

    Article  PubMed  Google Scholar 

  22. Joubert FJ: Lupin seed proteins: III. A physicochemical study of the proteins from white lupin seed (Lupinus albus). Biochim Biophys Acta 19: 172–173 (1956).

    Article  PubMed  Google Scholar 

  23. Kashlan N, Richardson M: The complete amino acid sequence of a major wheat protein inhibitor of α-amylase. Phytochemistry 20: 1781–1784 (1981).

    Article  Google Scholar 

  24. Krebbers E, Herdies L, De Clercq A, Seurinck J, Leemans J, Van Damme J, Segura M, Gheysen G, Van Montagu M, Vandekerckhove J: Determination of the processing sites of an Arabidopsis 2S albumin and characterization of the complete gene family. Plant Physiol 87: 859–866 (1988).

    Google Scholar 

  25. Kreis M, Forde BG, Rahman S, Miflin BJ, Shewry PR: Molecular evolution of the seed storage proteins of barley, rye and wheat. J Mol Biol 183: 499–502 (1985).

    Article  PubMed  Google Scholar 

  26. Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105–132 (1982).

    PubMed  Google Scholar 

  27. Li SS-L: Purification and characterization of seed storage proteins from Momordica charantia. Experientia 33: 895–896 (1977).

    PubMed  Google Scholar 

  28. Li SS-L, Lin TT-S, Forde MD: Isolation and characterization of a low-molecular-weight seed protein from Ricinus communis. Biochim Biophys Acta 492: 364–369 (1977).

    PubMed  Google Scholar 

  29. Lilley GG: Isolation of conglutin δ, a sulphur-rich protein from the seeds of Lupinus angustifolius L. J Sci Food Agric 37: 20–30 (1986).

    Google Scholar 

  30. Lilley GG: The subunit structure and stability of conglutin δ, a sulphur-rich protein from the seeds of Lupinus angustifolius L. J Sci Food Agric 37: 895–907 (1986).

    Google Scholar 

  31. Lilley GG, Caldwell JB, Kortt AA, Higgins TJ, Spencer D: Isolation and primary structure for a novel, methionine-rich protein from sunflower seeds (Helianthus annuus L). In: Applewhite TH (ed) Proceedings of the World Congress on Vegetable Protein Utilization in Human Foods and Animal Feedstuffs, pp. 497–502. American Oil Chemists' Society, Champaign, Illinois (1989).

    Google Scholar 

  32. Lilley GG, Inglis AS: Amino acid sequence of conglutin δ, a sulphur-rich seed protein of Lupinus angustifolius L. FEBS Lett 195: 235–241 (1986).

    Article  Google Scholar 

  33. Lonnerdal B, Janson JC: Studies on Brassica seed proteins. 1. The low molecular weight proteins in rapeseed. Isolation and characterization. Biochim Biophys Acta 278: 175–183 (1972).

    PubMed  Google Scholar 

  34. Perlman D, Halvorsen HO: A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol 167: 391–409 (1983).

    PubMed  Google Scholar 

  35. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    PubMed  Google Scholar 

  36. Schroeder HE: Major albumins of Pisum cotyledons. J Sci Food Agric 35: 191–198 (1984).

    PubMed  Google Scholar 

  37. Sharief PS, Li SSL: Amino acid sequence of small and large subunits of seed storage protein from Ricinus communis. J Biol Chem 257: 14753–14759 (1982).

    PubMed  Google Scholar 

  38. Spencer D, Higgins TJV, Button SC, Davey RA: Pulselabelling studies on protein synthesis in developing pea seeds and evidence of a precursor form of legumin small subunit. Plant Physiol 66: 510–515 (1980).

    Google Scholar 

  39. Tabor S, Richardson CC: DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci USA 84: 4767–4771 (1987).

    PubMed  Google Scholar 

  40. Von Heijne G: How signal sequences maintain cleavage specificity. J Mol Biol 173: 243–251 (1984).

    Article  PubMed  Google Scholar 

  41. Von Heijne G: Patterns of amino acid near signal cleavage sites. Eur J Biochem 133: 17–21 (1983).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gayler, K.R., Kolivas, S., Macfarlane, A.J. et al. Biosynthesis, cDNA and amino acid sequences of a precursor of conglutin δ, a sulphur-rich protein from Lupinus angustifolius . Plant Mol Biol 15, 879–893 (1990). https://doi.org/10.1007/BF00039427

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039427

Key words

Navigation