Skip to main content

Neuropsychological Impact of Treatment of Brain Tumors

  • Chapter
  • First Online:

Part of the book series: Cancer Treatment and Research ((CTAR,volume 150))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gajjar A, Chintagumpala M, Ashley D, et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St. Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol.2006;7:813–820.

    PubMed  Google Scholar 

  2. Garcia-Perez A, Narbona-Garcia J, Sierrasesumaga L, Aguirre-Ventallo M, Calvo-Manuel F. Neuropsychological outcome of children after radiotherapy for intracranial tumours. Dev Med Child Neurol. 1993;35:139–148.

    PubMed  CAS  Google Scholar 

  3. Maddrey AM, Bergeron JA, Lombardo ER, et al. Neuropsychological performance and quality of life of 10 year survivors of childhood medulloblastoma. J Neurooncol. 2005;72:245–253.

    PubMed  Google Scholar 

  4. Mulhern RK, Hancock J, Fairclough D, Kun L. Neuropsychological status of children treated for brain tumors: A critical review and integrative analysis. Med Pediatr Oncol. 1992;20:181–191.

    PubMed  CAS  Google Scholar 

  5. Roman DD, Sperduto PW. Neuropsychological effects of cranial radiation: current knowledge and future directions. Int J Radiat Biol Phys.1995;31:983–998.

    CAS  Google Scholar 

  6. Palmer SL, Gajjar A, Reddick WE, et al. Predicting Intellectual Outcome Among Children Treated With 35– 40 Gy Craniospinal Irradiation for Medulloblastoma. Neuropsychology. 2003;17:548–555.

    PubMed  Google Scholar 

  7. Ris MD, Packer R, Goldwein J, Jones-Wallace D, Boyett JM. Intellectual outcome after reduced-dose radiation therapy plus adjuvant chemotherapy for medulloblastoma: a Children's Cancer Group study. J Clin Oncol. 2001;19:3470–3476.

    PubMed  CAS  Google Scholar 

  8. Moore BD. Neurocognitive outcomes in survivors of childhood cancer. J Pediatr Psychol.2005;30:51–63.

    PubMed  Google Scholar 

  9. Mulhern RK, Merchant TE, Gajjar A, Reddick WE, Kun LE. Late neurocognitive sequelae in survivors of brain tumours in childhood. Lancet Oncol. 2004;5:339–408.

    Google Scholar 

  10. Palmer SL, Reddick, WE, Gajjar, A. Understanding the cognitive impact on children who are treated for medulloblastoma. J Pediatr Psychol. 2007;32:1040–1049.

    PubMed  Google Scholar 

  11. Kieffer-Renaux V, Viguier D, Raquin M-A, et al. Therapeutic schedules influence the pattern of intellectual decline after irradiation of posterior fossa tumors. Pediatr Blood Cancer. 2005;45:814–819.

    PubMed  Google Scholar 

  12. Spiegler BJ, Bouffet E, Greenberg ML, Rukta JT, Mabbott DJ. Change in neuro-cognitive functioning after treatment with cranial radiation in childhood. J Clin Oncol. 2004;22:706–713.

    PubMed  Google Scholar 

  13. Stargatt R, Rosenfeld JV, Maixner W, Ashley D. Multiple factors contribute to neuropsychological outcome in children with posterior fossa tumors. Dev Neuropsychol. 2007;32:729–748.

    PubMed  Google Scholar 

  14. Mulhern RK, Kepner JL, Thomas PR, Armstrong FD, Friedman HS, Kun LE. Neuropsychologic functioning of survivors of childhood medulloblastoma randomized to receive conventional or reduced-dose craniospinal irradiation: a Pediatric Oncology Group study. J Clin Oncol. 1998;16:1723–1728.

    PubMed  CAS  Google Scholar 

  15. Riva D, Milani N, Pantaleoni C, Ballerini E, Giorgi C. Combined treatment modality for medulloblastoma in childhood: effects on neuropsychological functioning. Neuropediatrics. 1991;22:36–42.

    PubMed  CAS  Google Scholar 

  16. Mabbott DJ, Spiegler BJ, Greenberg ML, Rutka JT, Hyder DJ, Bouffet E. Serial Evaluation of Academic and Behavioral Outcome After Treatment With Cranial Radiation in Childhood. J Clin Oncol. 2005;23:2256–2263.

    PubMed  Google Scholar 

  17. Copeland DR, deMoor C, Moore BD, 3rd, Ater JL. Neurocognitive development of children after a cerebellar tumor in infancy: A longitudinal study. J Clin Oncol. 1999;17:3476–3486.

    PubMed  CAS  Google Scholar 

  18. Reimers TS, Mortensen EL, Schmiegelow K. Memory deficits in long-term survivors of childhood brain tumors may primarily reflect general cognitive dysfunctions. Pediatr Blood Cancer. 2007;48:205–212.

    PubMed  Google Scholar 

  19. Schatz J, Kramer JH, Ablin A, Matthay KK. Processing speed, working memory, and IQ: a developmental model of cognitive deficits following cranial radiation therapy. Neuropsychology. 2000;14:189–200.

    PubMed  CAS  Google Scholar 

  20. Mulhern RK, Butler RW. Neurocognitive sequelae of childhood cancers and their treatments. Pediatr Rehabil. 2004;7:1–14.

    PubMed  Google Scholar 

  21. Butler RW, Haser JK. Neurocognitive effects of treatment for childhood cancer. Ment Retard Dev Disabil Res Rev. 2006;12:184–191.

    PubMed  Google Scholar 

  22. Merchant TE, Kiehna EN, Li C-S, Xiong X, Mulhern RK. Radiation dosimetry predicts IQ after conformal radiation therapy in pediatric patients with localized ependymoma. Int J Radiat Biol Phys. 2005;63:1546–1554.

    Google Scholar 

  23. Dennis M, Spiegler BJ, Hetherington CR, Greenberg ML. Neuropsychological sequelae of the treatment of children with medulloblastoma. J Neurooncol. 1996;29:91–101.

    PubMed  CAS  Google Scholar 

  24. Kiehna EN, Mulhern RK, Li C, Xiong X, Merchant TE. Changes in attentional performance of children and young adults with localized primary brain tumors after conformal radiation therapy. J Clin Oncol. 2006;24:5283–5290.

    PubMed  Google Scholar 

  25. Fouladi M, Gilger E, Kocak M, et al. Intellectual and functional outcome of children 3 years old or younger who have CNS malignancies. J Clin Oncol. 2005;23:7152–7160.

    PubMed  Google Scholar 

  26. Merchant TE, Mulhern RK, Krasin MJ, et al. Preliminary results from a phase II trial of conformal radiation therapy and evaluation of radiation-related CNS effects for pediatric patients with localized ependymoma. J Clin Oncol. 2004;22:3156–3162.

    PubMed  Google Scholar 

  27. Anderson VA, Godber T, Smibert E, Weiskop S, Ekert H. Cognitive and academic outcome following cranial irradiation and chemotherapy in children: a longitudinal study. Br J Cancer. 2000;82:25–62.

    Google Scholar 

  28. Butler RW, Hill JM, Steinherz PG, Meyers PA, Finlay JL. Neuropsychological effects of cranial irradiation, intrathecal methotrexate and systemic methotrexate in childhood cancer. J Clin Oncol. 1994;12:2621–2629.

    PubMed  CAS  Google Scholar 

  29. Copeland DR, Moore BDI, Francis DJ, Jaffe N, Culbert SJ. Neuropsychologic effects of chemotherapy on children with cancer: a longitudinal study. J Clin Oncol. 1996;14:2826–2835.

    PubMed  CAS  Google Scholar 

  30. Nathan PC, Whitcomb T, Wolters PL, et al. Very high-dose methotrexate (33.6 g/m2) as central nervous system preventive therapy for childhood acute lymphoblastic leukemia: results of National Cancer Institute/Children' s Cancer Group trials CCG-191P, CCG-134P and CCG-144P. Leuk Lymphoma. 2006;47:248–504.

    Google Scholar 

  31. Smibert E, Anderson VA, Godber T, Ekert H. Risk factors for intellectual and educational sequelae of cranial irradiation in childhood acute lymphoblastic leukaemia. Br J Cancer. 1996;73:825–830.

    PubMed  CAS  Google Scholar 

  32. Spiegler BJ, Kennedy K, Maze R, et al. Comparison of long-term neurocognitive outcome in young children with acute lymphoblastic leukemia treated with cranial radiation or high-dose or very high-dose intravenous methotrexate. J Clin Oncol. 2006;24:3858–3864.

    PubMed  CAS  Google Scholar 

  33. Moleski M. Neuropsychological, neuroanatomical, and neurophysiological consequences of CNS chemotherapy for acute lymphoblastic leukemia. Arch Clin Neuropsychol. 2000;15:603–630.

    PubMed  CAS  Google Scholar 

  34. Bleyer WA, Fallavollita J, Robison L, et al. Influence of age, sex and concurrent intrathecal methotrexate therapy on intellectual function after cranial irradiation during childhood: a report from the Children's Cancer Study Group. Pediatr Hematol Oncol. 1990;7:329–338.

    Google Scholar 

  35. Waber DP, Tarbell NJ, Fairclough D, et al. Cognitive sequelae of treatment in childhood acute lymphoblastic leukemia: cranial radiation requires an accomplice. J Clin Oncol. 1995;13:3490–3496.

    Google Scholar 

  36. Campbell LK, Scaduto M, Sharp W, et al. A meta-analysis of the neurocognitive sequelae of treatment for childhood acute lymphocytic leukemia. Pediatr Blood Cancer. 2007;49:65–73.

    PubMed  Google Scholar 

  37. Riva D, Giorgi C, Nichelli F, et al. Intrathecal methotrexate affects cognitive function in children with medulloblastoma. Neurology. 2002;59:48–53.

    PubMed  CAS  Google Scholar 

  38. Anderson V, Godber T, Smibert E, Ekert H. Neurobehavioural sequelae following cranial irradiation and chemotherapy in children: an analysis of risk factors. Pediatr Rehabil. 1997;1:63–76.

    PubMed  CAS  Google Scholar 

  39. Montour-Proulx I, Kuehn SM, Keene DL, et al. Cognitive changes in children treated for acute lymphoblastic leukemia with chemotherapy only according to the Pediatric Oncology Group 9605 protocol. J Child Neurol. 2005;20:129–133.

    PubMed  Google Scholar 

  40. Brown RT, Madan-Swain A, Walco GA, et al. Cognitive and academic late effects among children previously treated for acute lymphocytic leukemia receiving chemotherapy as CNS prophylaxis. J Pediatr Psychol. 1998;23:3–40.

    Google Scholar 

  41. von der Weid N, Mosimann I, Hirt A, et al. Intellectual outcome in children and adolescents with acute lymphoblastic leukaemia treated with chemotherapy alone: age- and sex-related differences. Eur J Cancer. 2003;39:359–365.

    PubMed  Google Scholar 

  42. Raymond-Speden E, Tripp G, Lawrence B, Holdaway D. Intellectual, Neuropsychological, and Academic Functioning in Long-Term Survivors of Leukemia. J Pediatr Psychol. 2000;25:59–68.

    PubMed  CAS  Google Scholar 

  43. Crossen JR, Garwood D, Glatstein E, Neuwelt EA. Neurobehavioral sequelae of cranial irradiation in adults: a review of radiation-induced encephalopathy. J Clin Oncol. 1994;12:627–642.

    PubMed  CAS  Google Scholar 

  44. Buizer AI, de Sonneville LMJ, van den Heuvel-Eibrink MM, Veerman AJP. Chemotherapy and attentional dysfunction in survivors of childhood acute lymphoblastic leukemia: effect of treatment intensity. Pediatr Blood Cancer. 2005;45:281–290.

    PubMed  Google Scholar 

  45. Mennes M, Stiers P, Vandenbussche E, et al. Attention and information processing in survivors of childhood acute lymphoblastic leukemia treated with chemotherapy only. Pediatr Blood Cancer. 2005;44:478–486.

    PubMed  Google Scholar 

  46. Espy KA, Moore IM, Kaufmann PM, Kramer JH, Matthay KK, Hutter JJ. Chemotherapeutic CNS prophylaxis and neuropsychologic change in children with acute lymphoblastic leukemia: a prospective study. J Pediatr Psychol. 2001;26:1–9.

    PubMed  CAS  Google Scholar 

  47. Reddick WE, Glass JO, Palmer SL, et al. Atypical white matter volume development in children following craniospinal irradiation. Neuro-Oncology. 2005;7:12–19.

    PubMed  Google Scholar 

  48. Shapiro WR, Allen JC, Horten BC. Chronic methotrexate toxicity to the central nervous system. Clin Bull. 1980;10:49–52.

    PubMed  CAS  Google Scholar 

  49. Rutkowski S, Bode U, Deinlein F, et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med. 2005;352:978–986.

    PubMed  CAS  Google Scholar 

  50. Anderson V, Northam E, Hendy J, Wrennall J. Developmental Neuropsychology. UK: Psychology Press Ltd; 2001.

    Google Scholar 

  51. Gottwald B, Wilde B, Mihajlovic Z, Mehdorn HM. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry. 2004;75:1524–1531.

    PubMed  CAS  Google Scholar 

  52. Steinlin M, Imfeld S, Zulauf P, et al. Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain. 2003;126:1998–2008.

    PubMed  Google Scholar 

  53. Gottwald B, Mihajlovic Z, Wilde B, Mehdorn HM. Does the cerebellum contribute to specific aspects of attention? Neuropsychologia. 2003;41:1452–1460.

    PubMed  Google Scholar 

  54. Stargatt R, Anderson V, Rosenfeld JV. Neuropsychological Outcome of Children Treated for Posterior Fossa Tumours: A Review. Brain Impairment. 2002;3:92–104.

    Google Scholar 

  55. Kao GD, Goldwein JW, Schultz DJ, Radcliffe J, Sutton L, Lange B. The impact of perioperative factors on subsequent intelligence quotient deficits in children treated for medulloblastoma/posterior fossa primitive neuroectodermal tumors. Cancer. 1994;74:965–971.

    PubMed  CAS  Google Scholar 

  56. Merchant TE, Lee H, Zhu J, et al. The effects of hydrocephalus on intelligence quotient in children with localized infratentorial ependymoma before and after focal radiation therapy. J Neurosurg. 2004;101:159–168.

    PubMed  Google Scholar 

  57. Merchant TE, Kiehna EN, Miles MA, Zhu J, Xiong X, Mulhern RK. Acute effects of irradiation on cognition: changes in attention on a computerized continuous performance test during radiotherapy in pediatric patients with localized primary brain tumors. Int J Radiat Biol Phys. 2002;53:1271–1278

    Google Scholar 

  58. Chapman CA, Waber DP, Bernstein JH, et al. Neurobehavioral and neurologic outcome in long-term survivors of posterior fossa brain tumors: role of age and perioperative factors. J Child Neurol. 1995;10:209–212.

    PubMed  CAS  Google Scholar 

  59. Packer RJ, Sposto R, Atkins TE, et al. Quality of life in children with primitive neuroectodermal tumors (medulloblastoma) of the posterior fossa. Pediatr Neurosci. 1987;13:169–175.

    PubMed  CAS  Google Scholar 

  60. Sarkar C, Pramanik P, Karak AK, et al. Are childhood and adult medulloblastomas different? A comparative study of clinicopathological features, proliferation index and apoptotic index. J Neurooncol. 2002;59:49–61.

    PubMed  Google Scholar 

  61. Armstrong CL, Stern CH, Corn BW. Memory performance used to detect radiation effects on cognitive functioning. Appl Neuropsychol. 2001;8:129–139.

    PubMed  CAS  Google Scholar 

  62. Welzel G, Steinvorth S, Wenz F. Cognitive effects of chemotherapy and/or cranial irradiation in adults. Strahlenther Onkol. 2004;181:141–156.

    Google Scholar 

  63. Taphoorn MJB, Klein M. Cognitive deficits in adult patients with brain tumours. Lancet Neurol. 2004;3:159–168.

    PubMed  Google Scholar 

  64. Armstrong CL, Gyato K, Awadalla AW, Lustig R, Tochner ZA. A critical review of the clinical effects of therapeutic irradiation damage to the brain: the roots of controversy. Neuropsychol Rev. 2004;14:65–86.

    PubMed  Google Scholar 

  65. Torres IJ, Mundt AJ, Sweeney PJ, et al. A longitudinal neuropsychological study of partial brain radiation in adults with brain tumors. Neurology. 2003;60:1113–1118.

    PubMed  CAS  Google Scholar 

  66. Laack NN, Brown PD. Cognitive sequelae of brain irradiation in adults. Semin Oncol. 2004;31:702–713.

    PubMed  Google Scholar 

  67. Neuwelt EA, Guastadisegni PE, Varallyay P, Doolittle ND. Imaging changes and cognitive outcome in primary CNS lymphoma after enhanced chemotherapy delivery. AJNR. 2005;26:258–265.

    PubMed  Google Scholar 

  68. Fliessbach K, Urbach H, Helmstaedter C, et al. Cognitive performance and magnetic resonance imaging findings after high-dose systemic and intraventricular chemotherapy for primary central nervous system lymphoma. Arch Neurol. 2003;60:563–568.

    PubMed  Google Scholar 

  69. Brown PD, Buckner JC, Uhm JH, Shaw EG. The neurocognitive effects of radiation in adult low-grade glioma patients. Neuro-Oncology. 2003;5:161–167.

    PubMed  Google Scholar 

  70. Tucha O, Smely C, Preier M, Lange K. Cognitive deficits before treatment among patients with brain tumors. Neurosurgery. 2000;47:324–334.

    PubMed  CAS  Google Scholar 

  71. Klein M, Heimans JJ, Aaronsen NK, et al. Effect of radiotherapy and other treatment-related factors on mid-term to long-term cognitive sequelae in low-grade gliomas: a comparative study. The Lancet. 2002;360:1361–1368.

    CAS  Google Scholar 

  72. Steen RG, Spence D, Shengjie W, Xiong X, Kun LE, Merchant TE. Effect of therapeutic ionizing radiation on the human brain. Ann Neurol. 2001;50:787–795.

    PubMed  CAS  Google Scholar 

  73. Fletcher JM, Copeland DR. Neurobehavioural effects of central nervous system prophylactic treatment of cancer in children. J Clin Exp Neuropsychol. 1988;10:495–537.

    PubMed  CAS  Google Scholar 

  74. Fouladi M, Chintagumpala M, Laningham FH, et al. White matter lesions detected by magnetic resonance imaging after radiotherapy and high-dose chemotherapy in children with medulloblastoma or primitive neuroectodermal tumor. J Clin Oncol. 2004;22:4551–4560.

    PubMed  Google Scholar 

  75. Reddick WE, White HA, Glass JO, et al. Developmental model relating white matter volume to neurocognitive deficits in pediatric brain tumor survivors. Cancer. 2003;97:2512–2519.

    PubMed  Google Scholar 

  76. Reddick WE, Shan ZY, Glass JO, et al. Smaller white-matter volumes are associated with larger deficits in attention and learning among long-term survivors of acute lymphoblastic leukemia. Cancer. 2006;106:941–949.

    PubMed  Google Scholar 

  77. Khong PL, Leung LH, Chan GC, et al. White matter anisotropy in childhood medulloblastoma survivors: association with neurotoxicity risk factors. Radiology. 2005;236:647–652.

    PubMed  Google Scholar 

  78. Khong PL, Leung LH, Fung AS, et al. White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. J Clin Oncol. 2006;24:884–890.

    PubMed  Google Scholar 

  79. Qiu D, Leung LH, Kwong DL, Chan GC, Khong PL. Mapping radiation dose distribution on the fractional anisotropy map: applications in the assessment of treatment-induced white matter injury. Neuroimage. 2006;31:109–115.

    PubMed  Google Scholar 

  80. Perry A, Schmidt RE. Cancer therapy-associated CNS neuropathology: an update and review of the literature. Acta Neuropathol. 2006;111:197–212.

    PubMed  CAS  Google Scholar 

  81. Brown WR, Thore CR, Moody DM, Robbins ME, Wheeler KT. Vascular damage after fractionated whole-brain irradiation in rats. Radiat Res. 2005;164:662–668.

    PubMed  CAS  Google Scholar 

  82. Brown WR, Blair RM, Moody DM, et al. Capillary loss precedes the cognitive impairment induced by fractionated whole-brain irradiation: a potential rat model of vascular dementia. J Neurol Sci. 2007;257:67–71.

    PubMed  Google Scholar 

  83. Cole PD, Kamen BA. Delayed neurotoxicity associated with therapy for children with acute lymphoblastic leukemia. Ment Retard Dev Dis. 2006;12:174–183.

    Google Scholar 

  84. Rola R, Raber J, Rizk A, et al. Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol. 2004;188:316–330.

    PubMed  CAS  Google Scholar 

  85. Monje ML, Palmer T. Radiation injury and neurogenesis. Curr Opin Neurol. 2003;16:129–134.

    PubMed  Google Scholar 

  86. Grill J, Renaux VK, Bulteau C, et al. Long-term intellectual outcome in children with posterior fossa tumors according to radiation doses and volumes. Int J Radiat Biol Phys. 1999;45:137–145.

    CAS  Google Scholar 

  87. Mulhern RK, Palmer SL, Merchant TE, et al. Neurocognitive consequences of risk-adapted therapy for childhood medulloblastoma. J Clin Oncol. 2005;23:551–559.

    Google Scholar 

  88. Carey ME, Hockenberry MJ, Moore IM, et al. Effect of intravenous methotrexate dose and infusion rate on neuropsychological function one year after diagnosis of acute lymphoblastic leukemia. J Pediatr Psychol. 2007;32:189–193.

    PubMed  Google Scholar 

  89. Iuvone L, Mariotti P, Colosimo C, Guzzetta F, Ruggiero A, Riccardi R. Long-term cognitive outcome, brain computed tomography scan, and magnetic resonance imaging in children cured for acute lymphoblastic leukemia. Cancer. 2002;95:2562–2670.

    PubMed  Google Scholar 

  90. Storm AJ, van der Kogel AJ, Nooter K. Effect of X-irradiation on the pharmacokinetics of methotrexate in rats: alteration of the blood-brain barrier. Eur J Cancer Clin Oncol. 1985;21:759–764.

    PubMed  CAS  Google Scholar 

  91. Lagercrantz H, Ringstedt T. Epigenetic and functional organization of the neuronal circuits in the CNS during development. In: Levene MI, Chervenak FA, Whittle M, Bennett MJ, Punt J, eds. Fetal and Neonatal Neurology and Neurosurgery. 3rd ed. London: Churchill Livingstone; 2001:3–9.

    Google Scholar 

  92. Huttenlocher PR. Morphometric study of human cerebral cortex development. In: Johnson MH, ed. Brain Development and Cognition. Cambridge, USA: Blackwell Publishers; 1993:112–124.

    Google Scholar 

  93. Erecinska M, Cherian S, Silver IA. Energy metabolism in mammalian brain during development. Prog Neurobiol. 2004;73:392–445.

    Google Scholar 

  94. Giedd JN. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2:861–863.

    PubMed  CAS  Google Scholar 

  95. Benes FM, Turtle M, Farol P. Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry. 1994;51:47–84.

    Google Scholar 

  96. Yakovlev PI, Lecours AR. The myelogenetic cycles of regional maturation of the brain. In: Minokowski A, ed. Regional development of the brain in early life. Philadelphia: Blackwell; 1967:3–70.

    Google Scholar 

  97. Brickman AM, Zimmerman ME, Paul RH, et al. Regional white matter and neuropsychological functioning across the adult lifespan. Biol Psychiatry. 2006;60:4–53.

    Google Scholar 

  98. Salat DH, Tuch DS, Greve DN, et al. Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging. 2005;26:1215–1227.

    PubMed  CAS  Google Scholar 

  99. Fouladi M, Gilger E, Kocak M, et al. Intellectual and functional outcome of children 3 years old or younger who have CNS malignancies. J Clin Oncol. 2005;23:7152–160.

    PubMed  Google Scholar 

  100. Hebb DO. The Organization of Behavior. New York: McGraw-Hill; 1949.

    Google Scholar 

  101. Andreassen CN, Alsner J, Overgaard J. Does variability in normal tissue reactions after radiotherapy have a genetic basis-where and how to look for it? Radiother Oncol. 2002;64:131–140.

    PubMed  Google Scholar 

  102. Andreassen CN, Alsner J, Overgaard J, et al. TGFB1 polymorphisms are associated with risk of late normal tissue complications in the breast after radiotherapy for early breast cancer. Radiother Oncol. 2005;75:18– 21.

    PubMed  CAS  Google Scholar 

  103. De Ruyck K, Wilding CS, Van Eijkeren M, Morthier R, Tawn EJ, Thierens H. Microsatellite polymorphisms in DNA repair genes XRCC1, XRCC3 and XRCC5 in patients with gynecological tumors: association with late clinical radiosensitivity and cancer incidence. Radiat Res. 2005; 164:237– 244.

    PubMed  Google Scholar 

  104. Hall EJ, Schiff PB, Hanks GE, et al. A preliminary report: frequency of A-T heterozygotes among prostate cancer patients with severe late responses to radiation therapy. Cancer J Sci Am. 1998;4:385– 389.

    Google Scholar 

  105. Hendry JH. Genomic instability: potential contributions to tumour and normal tissue response, and second tumours, after radiotherapy. Radiother Oncol. 2001;59:117–126.

    PubMed  CAS  Google Scholar 

  106. Butler RW, Mulhern RK. Neurocognitive Interventions for Children and Adolescents Surviving Cancer. J Pediatr Psychol.2005, 30(1): 65–78.

    PubMed  Google Scholar 

  107. Kinsella GJ, Prior M, Sawyer M, et al. Predictors and indicators of academic outcome in children 2 years following traumatic brain injury. J Int Neuropsychol Soc. 1997;3:608–616.

    PubMed  CAS  Google Scholar 

  108. Taylor H. Research on outcomes of pediatric traumatic brain injury: current advances and future directions. Dev Neuropsychol. 2004;25:19–225.

    Google Scholar 

  109. Taylor H, Yeates KO, Wade SL, Drotar D, Klein SK, Stancin T. Influences on first-year recovery from traumatic brain injury in children. Neuropsychology. 1999;13:76–89.

    PubMed  CAS  Google Scholar 

  110. Yeates KO, Taylor H, Drotar D, et al. Preinjury family environment as a determinant of recovery from traumatic brain injuries in school-age children. J Int Neuropsychol Soc. 1997;3:617–630.

    PubMed  CAS  Google Scholar 

  111. Taylor H, Yeates KO, Wade SL, Drotar D, Stancin T, Burant C. Bidirectional child-family influences on outcomes of traumatic brain injury in children. J Int Neuropsychol Soc. 2001;7:75–67.

    Google Scholar 

  112. Butler RW, Copeland DR. Attentional processes and their remediation in children treated for cancer: a literature review and the development of a therapeutic approach. J Int Neuropsychol Soc. 2002;8:115–124.

    PubMed  Google Scholar 

  113. van' t Hooft I, Andersson K, Bergman B, Sejersen T, Von Wendt L, Bartfai A. Beneficial effect from a cognitive training programme on children with acquired brain injuries demonstrated in a controlled study. Brain Inj. 2005;19:51– 58.

    Google Scholar 

  114. Anderson V, Catroppa C. Advances in postacute rehabilitation after childhood-acquired brain injury: a focus on cognitive, behavioral, and social domains. Am J Phys Med Rehabil. 2006;85:767–778.

    PubMed  Google Scholar 

  115. Mitby PA, Robison LL, Whitton JA, et al. Utilization of special education services and educational attainment among long-term survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Cancer. 2003;97:1115–1126.

    Google Scholar 

  116. Conklin HM, Khan RB, Reddick WE, et al. Acute neurocognitive response to methylphenidate among survivors of childhood cancer: a randomized, double-blind, cross-over trial. J Pediatr Psychol. 2007:32: 1127– 1139.

    PubMed  Google Scholar 

  117. Thompson SJ, Leigh L, Christensen R, et al. Immediate neurocognitive effects of methylphenidate on learning-impaired survivors of childhood cancer. J Clin Oncol. 2001;19:1802–1808.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia R. De Luca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

De Luca, C.R., Conroy, R., McCarthy, M.C., Anderson, V.A., Ashley, D.M. (2009). Neuropsychological Impact of Treatment of Brain Tumors. In: Goldman, S., Turner, C. (eds) Late Effects of Treatment for Brain Tumors. Cancer Treatment and Research, vol 150. Springer, Boston, MA. https://doi.org/10.1007/b109924_17

Download citation

  • DOI: https://doi.org/10.1007/b109924_17

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-77102-1

  • Online ISBN: 978-0-387-77103-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics