Skip to main content
Log in

Old and new determinants in the regulation of energy expenditure

  • Short Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Bw gain is controlled by energy intake on one hand and expenditure on the other. The components of energy expenditure are basal metabolism, exercise induced thermogenesis and adaptive thermogenesis. In this short review we shall discuss the main determinants of adaptive thermogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cannon B., Nedergaard J. Nonshivering thermogenesis and brown adipose tissue. In: Blatteis C.M. (Ed.), Physiology and pathophysiology of temperature regulation. World Scientific, Memphis, 1998, p. 63.

    Google Scholar 

  2. Rothwell N.J., Stock M.J. A role for brown adipose tissue in diet-induced thermogenesis. Nature 1979, 281: 31–35.

    Article  CAS  PubMed  Google Scholar 

  3. Cannon B., Nedergaard J. The biochemistry of an inefficient tissue: brown adipose tissue. Essays Biochem. 1985, 20: 110–164.

    CAS  PubMed  Google Scholar 

  4. Enerback S., Jacobsson A., Simpson E.M. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 1997, 387: 90–94.

    Article  CAS  PubMed  Google Scholar 

  5. Cunningham S., Leslie P., Hopwood D. et al. The characterization and energetic potential of brown adipose tissue in man. Clin. Sci. (Lond.) 1985, 69: 343–348.

    CAS  Google Scholar 

  6. Lean M.E., James W.P., Jennings G., Trayhurn P. Brown adipose tissue uncoupling protein content in human infants, children and adults. Clin. Sci. (Lond.) 1986, 71: 291–297.

    CAS  Google Scholar 

  7. Emorine L.J., Marullo S., Briend-Sutren M.M. et al. Molecular characterization of the human beta 3-adrenergic receptor. Science 1989, 245: 1118–1121.

    Article  CAS  PubMed  Google Scholar 

  8. Muzzin P., Revelli J.P., Kuhne F. et al. An adipose tissuespecific beta-adrenergic receptor. Molecular cloning and down-regulation in obesity. J. Biol. Chem. 1991, 266: 24053–24058.

    CAS  PubMed  Google Scholar 

  9. Giacobino J.P. Beta 3-adrenoceptor: an update. Eur. J. Endocrinol. 1995, 132: 377–385.

    Article  CAS  PubMed  Google Scholar 

  10. Collins S., Daniel K.W., Rohlfs E.M., Ramkumar V., Taylor I.L., Gettys T.W. Impaired expression and functional activity of the beta 3- and beta 1- adrenergic receptors in adipose tissue of congenitally obese (C57BL/6J ob/ob) mice. Mol. Endocrinol. 1994, 8: 518–527.

    CAS  PubMed  Google Scholar 

  11. Revelli J.P., Preitner F., Samec S. et al. Targeted gene disruption reveals a leptin-independent role for the mouse beta3-adrenoceptor in the regulation of body composition. J. Clin. Invest. 1997, 100: 1098–1106.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cousin B., Bascands-Viguerie N., Kassis N. et al. Cellular changes during cold acclimatation in adipose tissues. J. Cell. Physiol. 1996, 167: 285–289.

    Article  CAS  PubMed  Google Scholar 

  13. Collins S., Daniel K.W., Petro A.E., Surwit R.S. Strain-specific response to beta 3-adrenergic receptor agonist treatment of diet-induced obesity in mice. Endocrinology 1997, 138: 405–413.

    CAS  PubMed  Google Scholar 

  14. Ghorbani M., Claus T.H., Himms-Hagen J. Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a beta3- adrenoceptor agonist. Biochem. Pharmacol. 1997, 54: 121–131.

    Article  CAS  PubMed  Google Scholar 

  15. Ghorbani M., Himms-Hagen J. Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. Int. J. Obes. Relat. Metab. Disord. 1997, 21: 465–475.

    Article  CAS  PubMed  Google Scholar 

  16. Guerra C., Koza R.A., Yamashita H., Walsh K., Kozak L.P. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J. Clin. Invest. 1998, 102: 412–420.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Himms-Hagen J., Melnyk A., Zingaretti M.C., Ceresi E., Barbatelli G., Cinti S. Multilocular fat cells in WAT of CL- 316243-treated rats derive directly from white adipocytes. Am. J. Physiol. Cell Physiol. 2000, 279: C670–C681.

    CAS  PubMed  Google Scholar 

  18. Deng C., Paoloni-Giacobino A., Kuehne F. et al. Respective degree of expression of beta 1-, beta 2- and beta 3- adrenoceptors in human brown and white adipose tissues. Br. J. Pharmacol. 1996, 118: 929–934.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hoffstedt J., Lonnqvist F., Shimizu M., Blaak E., Arner P. Effects of several putative beta 3-adrenoceptor agonists on lipolysis in human omental adipocytes. Int. J. Obes. Relat. Metab. Disord. 1996, 20: 428–434.

    CAS  PubMed  Google Scholar 

  20. Tavernier G., Barbe P., Galitzky J. et al. Expression of beta3- adrenoceptors with low lipolytic action in human subcutaneous white adipocytes. J. Lipid Res. 1996, 37: 87–97.

    CAS  PubMed  Google Scholar 

  21. Konkar A.A., Zhai Y., Granneman J.G. Beta1-adrenergic receptors mediate beta3-adrenergic-independent effects of CGP 12177 in brown adipose tissue. Mol. Pharmacol. 2000, 57: 252–258.

    CAS  PubMed  Google Scholar 

  22. Sennitt M.V., Kaumann A.J., Molenaar P. et al. The contribution of classical (beta1/2-) and atypical beta- adrenoceptors to the stimulation of human white adipocyte lipolysis and right atrial appendage contraction by novel beta3- adrenoceptor agonists of differing selectivities. J. Pharmacol. Exp. Ther. 1998, 285: 1084–1095.

    CAS  PubMed  Google Scholar 

  23. Clement K., Vaisse C., Manning B.S. et al. Genetic variation in the beta 3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N. Engl. J. Med. 1995, 333: 352–354.

    Article  CAS  PubMed  Google Scholar 

  24. Walston J., Silver K., Bogardus C. et al. Time of onset of non-insulin-dependent diabetes mellitus and genetic variation in the beta 3-adrenergic-receptor gene. N. Engl. J. Med. 1995, 333: 343–347.

    Article  CAS  PubMed  Google Scholar 

  25. Widen E., Lehto M., Kanninen T., Walston J., Shuldiner A.R., Groop L.C. Association of a polymorphism in the beta 3-adrenergic-receptor gene with features of the insulin resistance syndrome in Finns. N. Engl. J. Med. 1995, 333: 348–351.

    Article  CAS  PubMed  Google Scholar 

  26. Shuldiner A.R., Sabra M. Trp64Arg beta3-adrenoceptor: when does a candidate gene become a disease-susceptibility gene? Obes. Res. 2001, 9: 806–809.

    Article  CAS  PubMed  Google Scholar 

  27. Collins S., Kuhn C.M., Petro A.E., Swick A.G., Chrunyk B.A., Surwit R.S. Role of leptin in fat regulation. Nature 1996, 380: 677.

    Article  CAS  PubMed  Google Scholar 

  28. Scarpace P.J., Matheny M., Pollock B.H., Tumer N. Leptin increases uncoupling protein expression and energy expenditure. Am. J. Physiol. 1997, 273: E226–E230.

    CAS  PubMed  Google Scholar 

  29. Satoh N., Ogawa Y., Katsuura G. et al. Sympathetic activation of leptin via the ventromedial hypothalamus: leptin- induced increase in catecholamine secretion. Diabetes 1999, 48: 1787–1793.

    Article  CAS  PubMed  Google Scholar 

  30. Boss O., Samec S., Paoloni-Giacobino A. et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 1997, 408: 39–42.

    Article  CAS  PubMed  Google Scholar 

  31. Fleury C., Neverova M., Collins S. et al. Uncoupling protein- 2: a novel gene linked to obesity and hyperinsulinemia. Nat. Genet. 1997, 15: 269–272.

    Article  CAS  PubMed  Google Scholar 

  32. Boss O., Muzzin P., Giacobino J.P. The uncoupling proteins, a review. Eur. J. Endocrinol. 1998, 139: 1–9.

    Article  CAS  PubMed  Google Scholar 

  33. Muzzin P., Boss O., Giacobino J.P. Uncoupling protein 3: its possible biological role and mode of regulation in rodents and humans. J. Bioenerg. Biomembr. 1999, 31: 467–473.

    Article  CAS  PubMed  Google Scholar 

  34. Boss O., Hagen T., Lowell B.B. Uncoupling proteins 2 and 3: potential regulators of mitochondrial energy metabolism. Diabetes 2000, 49: 143–156.

    Article  CAS  PubMed  Google Scholar 

  35. Echtay K.S., Winkler E., Frischmuth K., Klingenberg M. Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc. Natl. Acad. Sci. USA 2001, 98: 1416–1421.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Harper J.A., Stuart J.A., Jakobsons M.B. et al. Artifactual uncoupling by uncoupling protein 3 in yeast mitochondria at the concentrations found in mouse and rat skeletal-muscle mitochondria. Biochem. J. 2002, 361: 49–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Boss O., Samec S., Kuhne F. et al. Uncoupling protein-3 expression in rodent skeletal muscle is modulated by food intake but not by changes in environmental temperature. J. Biol. Chem. 1998, 273: 5–8.

    Article  CAS  PubMed  Google Scholar 

  38. Clapham J.C., Arch J.R., Chapman H. et al. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 2000, 406: 415–418.

    Article  CAS  PubMed  Google Scholar 

  39. Cadenas S., Echtay K.S., Harper J.A. et al. The basal proton conductance of skeletal muscle mitochondria from transgenic mice overexpressing or lacking uncoupling protein- 3. J. Biol. Chem. 2002, 277: 2773–2778.

    Article  CAS  PubMed  Google Scholar 

  40. Skulachev V.P. Uncoupling: new approaches to an old problem of bioenergetics. Biochim. Biophys. Acta 1998, 1363: 100–124.

    Article  CAS  PubMed  Google Scholar 

  41. Vidal-Puig A.J., Grujic D., Zhang C.Y. et al. Energy metabolism in uncoupling protein 3 gene knockout mice. J. Biol. Chem. 2000, 275: 16258–162660.

    Article  CAS  PubMed  Google Scholar 

  42. Echtay K.S., Roussel D., St-Pierre J. et al. Superoxide activates mitochondrial uncoupling proteins. Nature 2002, 415: 96–99.

    Article  CAS  PubMed  Google Scholar 

  43. Schrauwen P., Saris W.H., Hesselink M.K. An alternative function for human uncoupling protein 3: protection of mitochondria against accumulation of nonesterified fatty acids inside the mitochondrial matrix. FASEB. J. 2001, 15: 2497–2502.

    Article  CAS  PubMed  Google Scholar 

  44. Samec S., Seydoux J., Dulloo A.G. Role of UCP homologues in skeletal muscles and brown adipose tissue: mediators of thermogenesis or regulators of lipids as fuel substrate? FASEB. J. 1998, 12: 715–724.

    CAS  PubMed  Google Scholar 

  45. Hayashi T., Hirshman M.F., Kurth E.J., Winder W.W., Goodyear L.J. Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 1998, 47: 1369–1373.

    CAS  PubMed  Google Scholar 

  46. Zhou M., Lin B.Z., Coughlin S., Vallega G., Pilch P.F. UCP- 3 expression in skeletal muscle: effects of exercise, hypoxia, and AMP-activated protein kinase. Am. J. Physiol. Endocrinol. Metab. 2000, 279: E622–E629.

    CAS  PubMed  Google Scholar 

  47. Crow M.T., Kushmerick M.J. Chemical energetics of slowand fast-twitch muscles of the mouse. J. Gen. Physiol. 1982, 79: 147–166.

    Article  CAS  PubMed  Google Scholar 

  48. Kushmerick M.J., Meyer R.A., Brown T.R. Regulation of oxygen consumption in fast- and slow-twitch muscle. Am. J. Physiol. 1992, 263: C598–C606.

    CAS  PubMed  Google Scholar 

  49. Hesselink M.K., Keizer H.A., Borghouts L.B. et al. Protein expression of UCP3 differs between human type 1, type 2a, and type 2b fibers. FASEB. J. 2001, 15: 1071–1073.

    CAS  PubMed  Google Scholar 

  50. Schrauwen P., Troost F.J., Xia J., Ravussin E., Saris W.H. Skeletal muscle UCP2 and UCP3 expression in trained and untrained male subjects. Int. J. Obes. Relat. Metab. Disord. 1999, 23: 966–972.

    Article  CAS  PubMed  Google Scholar 

  51. Russell A., Wadley G., Snow R. et al. Slow component of VO2 kinetics: the effect of training status, fibre type, UCP3 mRNA and citrate synthase activity. Int. J. Obes. Relat. Metab. Disord. 2002, 26: 157–164.

    Article  CAS  PubMed  Google Scholar 

  52. Sala E., Roca J., Marrades R.M. et al. Effects of endurance training on skeletal muscle bioenergetics in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1999, 159: 1726–1734.

    Article  CAS  PubMed  Google Scholar 

  53. Mador M.J., Bozkanat E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Respir. Res. 2001, 2: 216–224.

    Article  CAS  PubMed  Google Scholar 

  54. Lanouette C.M., Giacobino J.P., Perusse L. et al. Association between uncoupling protein 3 gene and obesity-related phenotypes in the Quebec Family Study. Mol. Med. 2001, 7: 433–441.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Lanouette C.M., Chagnon Y.C., Rice T. et al. Uncoupling protein 3 gene is associated with body composition changes with training in HERITAGE study. J. Appl. Physiol. 2002, 92: 1111–1118.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Giacobino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, A.P., Giacobino, J.P. Old and new determinants in the regulation of energy expenditure. J Endocrinol Invest 25, 862–866 (2002). https://doi.org/10.1007/BF03344049

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03344049

Key-words

Navigation