Skip to main content
Log in

A novel method of DNA shuffling without PCR process

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

Most DNA shuffling methods currently used require PCR process. A novel method of DNA shuffling without PCR process is described, taking advantage of the feature of some restriction enzymes whose recognition sites differ from their cleavage sites, thus giving rise to different cohesive ends. These cohesive ends can be rejoined at their native sites from different parental sequences, generating new sequences with various combinations of mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Stemmer, W. P., DNA shuffling by random fragmentation and reassembly:in vitro recombination for molecular evolution, Proc. Natl. Acad. Sci. USA, 1994, 91(22): 10747–10751.

    Article  Google Scholar 

  2. Stemmer, W. P., Rapid evolution of a proteinin vitro by DNA shuffling, Nature, 1994, 370(6488): 389–391.[DOI]

    Article  Google Scholar 

  3. Zhao, H., Arnold, F. H., Optimization of DNA shuffling for high fidelity recombination, Nucleic Acids Res., 1997, 25(6): 1307–1308.[DOI]

    Article  Google Scholar 

  4. Zhao, H., Giver, L., Shao, Z. et al., Molecular evolution by staggered extension process (StEP)in vitro recombination, Nat. Biotechnol., 1998, 16(3): 258–261.

    Article  Google Scholar 

  5. Shao, Z., Zhao, H., Giver, L. et al., Random-primingin vitro recombination: an effective tool for directed evolution, Nucleic Acids Res., 1998, 26(2): 681–683.[DOI]

    Article  Google Scholar 

  6. Crameri, A., Raillard, S. A., Bermudez, E. et al., DNA shuffling of a family of genes from diverse species accelerates directed evolution, Nature, 1998, 391(6664): 288–291.[DOI]

    Article  Google Scholar 

  7. Kikuchi, M., Ohnishi, K., Harayama, S., Novel family shuffling methods for thein vitro evolution of enzymes, Gene, 1999, 236(1): 159–167.[DOI]

    Article  Google Scholar 

  8. Kikuchi, M., Ohnishi, K., Harayama, S., An effective family shuffling method using single-stranded DNA, Gene, 2000, 243(1–2): 133–137.[DOI]

    Article  Google Scholar 

  9. Ness, J. E., Kim, S., Gottman, A. et al., Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently, Nat. Biotechnol., 2002, 20(12): 1251–1255.[DOI]

    Article  Google Scholar 

  10. Wang, Q., Liu, Q., Li, B., Simultaneous detection of 7 mutations with 7 forward primers and 1 common reverse primer in a single PCR step. J Biochem Biophys Methods, 2004, 58(2): 153–157.[DOI]

    Article  Google Scholar 

  11. Huang, M. M., Arnheim, N., Goodman, M. F., Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR, Nucleic Acids Res., 1992, 20(17): 4567–4573.

    Article  Google Scholar 

  12. Kwok, S., Kellogg, D. E., McKinney, N. et al., Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies, Nucleic Acids Res., 1990, 18(4): 999–1005.

    Article  Google Scholar 

  13. Sarkar, G., Cassady, J., Bottema, C. D. K. et al., Characterization of polymerase chain reaction amplification of specific alleles, Anal. Biochem., 1990, 186(1): 64–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baojian Li.

About this article

Cite this article

Wang, Q., Liu, Q., Li, G. et al. A novel method of DNA shuffling without PCR process. Chin.Sci.Bull. 49, 689–691 (2004). https://doi.org/10.1007/BF03184266

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03184266

Keywords

Navigation