Skip to main content
Log in

Nonlinear effects in quantum electrodynamics

Нелинейные зффекты в квантовой злектродинамике

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

The fourth-rank vacuum polarization tensor, which is related to the lowest-order nonlinear interaction between four electromagnetic fields in quantum electrodynamics, is exactly calculated in terms of rational, logarithm and dilogarithm functions when two of the four electromagnetic fields describe photons off the mass shell. This task has been accomplished by a not exccedingly laborious effort with the aid of double dispersion relations which proved to be a very convenient tool for the treatment of these problems (in particular, photon-photon scattering). From the explicit expression of the polarization tensor we have easily obtained the exact amplitudes for photon-photon scattering, photon splitting and photon coalescence into photons on nuclei. Moreover we give the real and imaginary part of Delbrück scattering in the form of threefold integrals over the momentum transferred to the nucleus by one of the two virtual photons. This can be compared with the fivefold and sixfold integrals for the imaginary and real part, respectively, available in the existing literature on Delbrück scattering. Finally we give an explicit expression for the differential cross-section of Delbrück scattering in the limit of low energies.

Riassunto

Il tensore quadruplo di polarizzazione del vuoto, che in elettrodinamica quantistica descrive l’interazione non lineare fra quattro campi elettromagnetici all’ordine perturbativo più basso, è stato calcolato esattamente in termini di funzioni razionali, logaritmiche e dilogaritmiche, nel caso in cui due dei quattro campi elettromagnetici descrivono fotoni virtuali. Questo scopo è stato raggiunto con un lavoro relativamente non eccessivo facendo uso delle relazioni di dispersione doppie che si sono già dimostrate molto utili per trattare simili problemi (in particolare, nel caso dello scattering fotonefotone). Dalla conoscenza esplicita del tensore di polarizzazione abbiamo ottenuto facilmente le ampiezze esatte dello scattering fotone-fotone, del decadimento e della coalescenza di fotoni in altri fotoni su nuclei. Inoltre abbiamo ottenuto la parte reale e la parte immaginaria dell’ampiezza di diffusione elastica di fotoni da nuclei («Delbrück scattering») nella forma di integrali tripli nell’impulso trasferito da uno dei due fotoni virtuali al nucleo. Questo risultato può essere confrontato con gli integrali quintupli per la parte immaginaria e sestupli per la parte reale che si trovano nella letteratura esistente sul «Delbrück scattering». Infine abbiamo dato un’espressione esplicita della sezione d’urto differenziale per il «Delbrück scattering» valida nel limite delle basse energie.

Реэюме

В терминах рациональных, логарифмических и двойных логарифмических функций, когда два иэ четырех злектромагнитных полей описывают фотоны вне массовой поверхности, точно вычисляется тенэор поляриэации вакуума четвертого порядка, который свяэан с нелинейным вэаимодействием ниэщего порядка между четырьмя злектромагнитными полями в квантовой злектродинамике. Рещение зтой эадачи было осушествлено посредством не очень сложных вычислений, испольэуюших двойные дисперсионные соотнощения, которые, как было докаэано, представляют очень удобное средство для рассмотрения таких проблем (в частности, рассеяние фотона фотоном). Иэ точного выражения тенэора поляриэации мы легко получаем точные амплитуды для рассеяния фотона фотоном, расшепления фотона и слияния фотонов в фотоны на ядрах. Кроме того, мы приводим вешественную и мнимую части рассеяния Дельбрюка в виде трехкратных интегралов по передаваемому импульсу ядру одним иэ двух виртуальных фотонов. Это можно сравнить с пятикратным и щестикратным интегралами для мнимой и вешественной частей, соответственно, имеюшимися в сушествуюшей литературе по рассеянию Дельбрюка. В эаключение, мы приводим точное выражение для дифференциального поперечного сечения рассеяния Дельбрюка в пределе малых знергий.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Vavilov:Journ. Russ. Phys. Chem.,60, 555 (1928);Phys. Rev.,36, 1590 (1930).

    Google Scholar 

  2. M. Delbrück:Zeits. Phys.,84, 144 (1933).

    Google Scholar 

  3. O. Halpern:Phys. Rev.,44, 855 (1933).

    Article  ADS  Google Scholar 

  4. H. Euler andB. Kockel:Naturwiss.,23, 246 (1935).

    Article  ADS  Google Scholar 

  5. E. J. Williams:Kgl. Danske Videnskab. Selskab. Mat.-Fys. Med.,13, No. 4 (1935).

  6. W. Heisenberg andH. Euler:Zeits. Phys.,98, 714 (1935).

    Article  ADS  Google Scholar 

  7. V. F. Weisskopf:Kgl. Danske Videnskab. Selskab. Mat.-Fys. Med.,14, No. 6 (1936).

  8. R. Karplus andM. Neuman:Phys. Rev.,80, 380 (1950).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. J. Schwinger:Phys. Rev.,82, 664 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. H. Euler:Ann. der Phys.,26, 398 (1936).

    Article  ADS  MATH  Google Scholar 

  11. A. Akhiezer:Phys. Zeits. Sowjetunion,11, 263 (1937).

    MATH  Google Scholar 

  12. R. Karplus andM. Neuman:Phys. Rev.,83, 776 (1951).

    Article  ADS  MATH  Google Scholar 

  13. B. De Tollis:Nuovo Cimento,32, 757 (1964);35, 1182 (1965). See alsoD. Di Gregorio: Thesis submitted for the degree in Physics at the University of Rome (July 1966) (unpublished), where many numerical results and curves on γ-γ scattering are given.

    Article  Google Scholar 

  14. M. Bolsterli:Phys. Rev.,94, 367 (1954).

    Article  ADS  MATH  Google Scholar 

  15. D. Boccaletti, V. de Sabbata andC. Gualdi:Nuovo Cimento,43 A, 1115 (1966).

    Article  ADS  Google Scholar 

  16. Y. Shima:Phys. Rev.,142, 944 (1966).

    Article  ADS  MATH  Google Scholar 

  17. V. Costantini, B. De Tollis andG. Pistoni:Nuovo Cimento,46 A, 684 (1966).

    Article  ADS  Google Scholar 

  18. N. Kemmer:Helv. Phys. Acta,10, 112 (1937).

    Google Scholar 

  19. N. Kemmer andG. Ludwig:Helv. Phys. Acta,10, 182 (1937).

    Google Scholar 

  20. A. Akhiezer andI. Pomeranchuk:Phys. Zeits. Sowjetunion,11, 478 (1937).

    MATH  Google Scholar 

  21. F. Rohrlich andR. L. Gluckstern:Phys. Rev.,86, 1 (1952).

    Article  ADS  MATH  Google Scholar 

  22. H. A. Bethe andF. Rohrlich:Phys. Rev.,86, 10 (1952).

    Article  ADS  MATH  Google Scholar 

  23. P. Kessler:Journ. Phys. Rad.,19, 739 (1958).

    Article  MATH  Google Scholar 

  24. W. Zernik:Phys. Rev.,120, 549 (1960).

    Article  ADS  Google Scholar 

  25. F. Ehlotzky andG. C. Sheppey:Nuovo Cimento,33, 1185 (1964); see alsoF. Ehlotzky:Nuovo Cimento,31, 1037 (1964).

    Article  MathSciNet  Google Scholar 

  26. H. Cheng andTai Tsun Wu:Phys. Rev.,182, 1852, 1868, 1873, 1899 (1969).

    Article  ADS  Google Scholar 

  27. R. Bösch, J. Lang, R. Müller andW. Wölfli:Phys. Lett.,2, 16 (1962);Helv. Phys. Acta,36, 625 (1963), with references to all previous papers.

    Article  ADS  Google Scholar 

  28. J. Moffat andM. W. Stringfellow:Proc. Roy. Soc., A254, 242 (1960).

    Article  ADS  Google Scholar 

  29. U. Stierlin, W. Scholz andB. Povh:Zeits. Phys.,170, 47 (1962).

    Article  ADS  Google Scholar 

  30. H. E. Jackson andK. J. Wetzel:Phys. Rev. Lett.,22, 1008 (1969).

    Article  ADS  Google Scholar 

  31. W. K. Roberts andD. C. Liu:Bull. Amer. Phys. Soc.,11, 368 (1966).

    Google Scholar 

  32. A. W. Adler andS. G. Cohen:Phys. Rev.,146, 1001 (1966).

    Article  ADS  Google Scholar 

  33. V. M. Haratyunian, F. R. Haratyunian, K. A. Ispirian andV. A. Tumanyan:Phys. Lett.,6, 175 (1963).

    Article  ADS  Google Scholar 

  34. G. Rosen andF. C. Whitmore:Phys. Rev.,137, B 1357 (1965).

    Google Scholar 

  35. For the dilogarithm function see for example:L. Lewin:Dilogarithms and Associated Functions (London, 1958);K. Mitchell:Phil. Mag.,40, 351 (1949).

  36. S. Mandelstam:Phys. Rev.,115, 1741 (1959).

    Article  MathSciNet  ADS  Google Scholar 

  37. R. E. Cutkosky:Journ. Math. Phys.,1, 429 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. In eq. (26) of ref. (21) a misprint should be noted: the sign of the term (1/27πp) [(109 + …)…] is wrong. Equation (32) of the same paper is correct.

    Article  ADS  MATH  Google Scholar 

  39. The low-energy approximation for Delbrück scattering has been considered also in two previous papers (38,39). However in ref. (38) the angular distribution is written in terms of some constants the numerical values of which have not been given by the authors; moreover it seems to have an incorrect behaviour (in particular at 180°). In ref. (39) the low-energy limit for Delbrück scattering was obtained by starting from the Euler-Heisenberg-Schwinger effective Lagrangian which describes the interaction of low-energy electromagnetic fields. Nevertheless for Delbrück scattering the virtual photons exchanged with the nucleus may have also very high momenta. This circumstance and the consequent arbitrary procedure used by the authors to obtain convergent expressions, make their results unreliable.

    Google Scholar 

  40. C. Eftimiu andC. Vrejoiu:Sov. Phys. JETP,11, 971 (1960).

    Google Scholar 

  41. J. C. Herrera andP. Roman:Nuovo Cimento,33, 1657 (1964).

    Article  MathSciNet  Google Scholar 

  42. Equation (84) is in agreement with ref. (16). The cross-section given in ref. (14) is too small by a factor of 1/2.

    Article  ADS  Google Scholar 

  43. The results of ref. (17) are given in terms of the kinematical variablet in the place ofs because in that paper photons 1 and 2 have been assumed to be incoming.

    Article  ADS  Google Scholar 

  44. We want to point out a misprint in the second paper quoted in ref. (13) (B. De Tollis:Nuovo Cimento,35, 1182 (1965)): in the last term of the fourth of eqs. (10), for «M (1)1122 (s, t)» read «M (1)1122 (t, s)», according to eqs. (9) of the same paper.

    Article  Google Scholar 

  45. V. Costantini, B. De Tollis andG. Pistoni:A preliminary approach to Delbrück scattering, Istituto di Fisica di Roma, Nota Interna No. 164 (March 1968) (unpublished).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costantini, V., De Tollis, B. & Pistoni, G. Nonlinear effects in quantum electrodynamics. Nuov Cim A 2, 733–787 (1971). https://doi.org/10.1007/BF02736745

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736745

Navigation