Skip to main content
Log in

Tracking and detection of epileptiform activity in multichannel ictal EEG using signal subspace correlation of seizure source scalp topographies

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Conventional methods for monitoring clinical (epileptiform) multichannel electroencephalogram (EEG) signals often involve morphological, spectral or time-frequency analysis on individual channels to determine waveform features for detecting and classifying ictal events (seizures) and inter-ictal spikes. Blind source separation (BSS) methods, such as independent component analysis (ICA), are increasingly being used in biomedical signal processing and EEG analysis for extracting a set of underlying source waveforms and sensor projections from multivariate time-series data, some of which reflect clinically relevant neurophysiological (epileptiform) activity. The work presents an alternative spatial approach to source tracking and detection in multichannel EEG that exploits prior knowledge of the spatial topographies of the sensor projections associated with the target sources. The target source sensor projections are obtained by ICA decomposition of data segments containing representative examples of target source activity, e.g. a seizure or ocular artifact. Source tracking and detection are then based on the subspace correlation between individual target sensor projections and the signal subspace over a moving window. Different window lengths and subspace correlation threshold criteria reflect transient or sustained target source activity. To study the behaviour and potential application of this spatial source tracking and detection approach, the method was used to detect (transient) ocular artifacts and (sustained) seizure activity in two segments of 25-channel EEG data recorded from one epilepsy patient on two separate occasions, with promising and intuitive results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bankman, I. N., Johnson, K. O., andSchneider, W. (1993): ‘Optimal detection, classification, and superposition resolution in neural waveform recordings’,IEEE Trans. Biomed. Eng.,40, pp. 836–841

    Article  Google Scholar 

  • Bell, A. J., andSejnowski, T. J. (1995): ‘An information-maximization approach to blind separation and blind deconvolution’,Neural Comput.,7, pp. 1483–1492

    Google Scholar 

  • Cichocki, A., andAmari, S. (2002): ‘Adaptive blind signal and image processing: learning algorithms and applications’ (John Wiley & Sons Ltd, 2002)

  • Dingle, A., Jones, R., Carroll, G., andFright, R. (1993): ‘A multi-stage system to detect epileptiform activity in the EEG’,IEEE Trans. Biomed. Eng.,40, pp. 1260–1268

    Article  Google Scholar 

  • Flanagan, D., Agarwal, R., andGotman, J. (2002): ‘Computer-aided spatial classification of epileptic spikes’,J. Clin. Neurophysiol.,19, pp. 125–135

    Article  Google Scholar 

  • Gotman, J. (1999): ‘Automatic detection of seizures and spikes’,J. Clin. Neurophysiol.,16, pp. 130–140

    Article  Google Scholar 

  • Hesse, C. W., andJames, C. J. (2004): ‘A time-frequency approach to blind source separation using statistically optimal wavelet packets applied to ictal EEG’. Proc. 2nd IEE Medical Signal & Information Processing Conf., pp. 137–144

  • Hyvärinen, A., andOja, E. (1997): ‘A fast fixed-point algorithm for idependent component analysis’,J Neural Comput.,9, pp. 1483–1492

    Article  Google Scholar 

  • Hyvärinen, A., Karhunen, J., andOja, E. (2001): ‘Independent component analysis’ (John Wiley & Sons, New York, 2001)

    Google Scholar 

  • James, C. J., Jones, R. D., Bones, P. J., andCarroll, G. J. (1999): ‘Detection of epileptiform discharges in the EEG by a hybrid system comprising mimetic, self-organized artificial neural network, and fuzzy logic stages’,Clin. Neurophysiol.,110, pp. 2049–2063

    Article  Google Scholar 

  • James, C. J., andHesse, C. W. (2005): ‘Independent component analysis for biomedical signals’,Physiol. Meas.,26, pp. R15-R39

    Article  Google Scholar 

  • Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., McKeown, M. J., Iragui, V., andSejnowski, T. J. (2000): ‘Removing electroencephalographic artifacts by blind source separation’,Psychophysiol.,37, pp. 163–178

    Article  Google Scholar 

  • Kobayashi, K., James, C. J., Nakahori, T., Akiyama, T., andGotman, J. (1999): ‘Isolation of epileptiform discharges from unaveraged EEG by independent component analysis’,Clin. Neurophysiol.,110, pp. 1755–1763

    Article  Google Scholar 

  • Kobayashi, K., James, C. J., Yoshinaga, H., Ohtsuka, Y., andGotman, J. (2000): ‘The electroencephalogram through a software microscope: Non-invasive localization and visualization of epileptic seizure activity from inside the brain’,Clin. Neurophysiol.,111, pp. 134–149

    Article  Google Scholar 

  • Ossadtchi, A., Baillet, S., Mosher, J., Thyerlei, D., Sutherling, W., andLeahy, R. (2004): ‘Automated interictal spike detection and source localization in magnetoencephalography using independent components analysis and spatio-temporal clustering’,Clin. Neurophysiol.,115, pp. 508–522

    Article  Google Scholar 

  • Wax, M., andKailath, T. (1985): ‘Detection of signals by information theoretic criteria’,IEEE Trans. Acoust., Speech Signal Process.,33, pp. 387–392

    Article  MathSciNet  Google Scholar 

  • Wax, M., andZiskind, I. (1989): ‘Detection of the number of coherent signals by the MDL principle’,IEEE Trans. Acoust., Speech Signal Process.,37, pp. 1190–1196

    Article  Google Scholar 

  • Wilson, S. B., andEmerson, R. G. (2002): ‘Spike detection: A review and comparison of algorithms’,Clin. Neurophysiol.,113, pp. 1873–1883

    Article  Google Scholar 

  • Wilson, S. B., Scheuer, M. L., Emerson, R. G., andGabor, A. J. (2004): ‘Seizure detection: Evaluation of the reveal algorithm’,Clin. Neurophysiol.,115, pp. 2280–2291

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Hesse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesse, C.W., James, C.J. Tracking and detection of epileptiform activity in multichannel ictal EEG using signal subspace correlation of seizure source scalp topographies. Med. Biol. Eng. Comput. 43, 764–770 (2005). https://doi.org/10.1007/BF02430955

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02430955

Keywords

Navigation