Skip to main content
Log in

Cell surface antigens ofPhytophthora spores: biological and taxonomic characterization

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The oomycetes are a class of protists that produce biflagellate asexual zoospores. Members of the oomycetes have close phylogenetic affinities with the chromophyte algae and are widely divergent from the higher fungi. This review focuses on two genera,Phytophthora andPythium, which belong to the family Pythiaceae, and the order Peronosporales. These two genera contain many species that cause serious diseases in plants. Molecules on the surface of zoospores and cysts of these organisms are likely to play crucial roles in the infection of host plants. Knowledge of the properties of the surface of these cells should thus help increase our understanding of the infection process. Recent studies ofPhytophthora cinnamomi andPythium aphanidermatum have used lectins to analyse surface carbohydrates and have generated monoclonal antibodies (MAbs) directed towards a variety of zoospore and cysts surface components. Labelling studies with these probes have detected molecular differences between the surface of the cell body and of the flagella of the zoospores. They have been used to follow changes in surface components during encystment, including the secretion of an adhesive that bonds the spores to the host surface. Binding of lectin and antibody probes to the surface of living zoospores can induce encystment, giving evidence of cell receptors involved in this process. Freeze-substitution and immunolabelling studies have greatly augmented our understanding of the synthesis and assembly of the zoospore surface during zoosporogenesis. Synthesis of a variety of zoospore components begins when sporulation is induced. Cleavage of the multinucleate sporangium is achieved through the progressive extension of partitioning membranes, and a number of surface antigens are assembled onto the zoospore surface during cleavage. Comparisons of antibody binding to many isolates and species ofPhytophthora andPythium have revealed that surface components on zoospores and cysts exhibit a range of taxonomic specificities. Surface antigens or epitopes may occur on only a few isolates of a species; they may be species-specific, genus-specific or occur on the spores of both genera. Spore surface antigens thus promise to be of significant value for studies of the taxonomy and phylogeny of these protists, as well as for disease diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

MAbs:

monoclonal antibodies

ConA:

Concanavalin A

SBA:

soybean agglutinin

WGA:

wheat germ agglutinin

gps:

glycoproteins

References

  • Adler J (1976) The sensing of chemicals by bacteria. Scient Am 234: 40–47

    Google Scholar 

  • Ali-Shtayeh MS, MacDonald JD, Kabashima J (1991) A method for using commercial ELISA tests to detect zoospores ofPhytophthora andPythium species in irrigation water. Plant Dis 75: 305–311

    Google Scholar 

  • Anderson MA, Sandrin MS, Clarke AE (1984) A high proportion of hybridomas raised to a plant extract secrete antibody to arabinose or galactose. Plant Physiol 75: 1013–1016

    Google Scholar 

  • Arms K, Camp PS (1979) Biology. Holt, Rinehart and Winston, WB Saunders, New York

    Google Scholar 

  • Bacic A, Williams ML, Clarke AE (1985) Studies on the cell surface of zoospores and cysts of the fungusPhytophthora cinnamomi: nature of the surface saccharides as determined by quantitative lectin binding studies. J Histochem Cytochem 33: 384–388

    Google Scholar 

  • Bailey AM, Mena GL, Herrera-Estrella L (1991) Genetic transformation of the plant pathogensPhytophthora capsici andPhytophthora parasitica. Nucleic Acids Res 19: 4273–4278

    Google Scholar 

  • — — — (1993) Transformation of four pathogenicPhytophthora spp. by microprojectile bombardment on intact mycelia. Curr Genet 23: 42–46

    Google Scholar 

  • Barr DJS (1981) The phylogenetic and taxonomic implications of flagellar rootlet morphology among zoosporic fungi. BioSystems 14: 359–370

    Google Scholar 

  • — (1983) The zoosporic grouping of plant pathogens. Entity or non-entity? In: Buczacki ST (ed) Zoosporic plant pathogens. A modern perspective. Academic Press, London, pp 43–83

    Google Scholar 

  • Bartnicki-Garcia S (1970) Cell wall composition and other biochemical markers in fungal phytogeny. In: Harborne JB (ed) Phytochemical phytogeny, Academic Press, London, pp 81–103

    Google Scholar 

  • — (1987) The cell wall: a crucial structure in fungal evolution. In: Rayner ADM, Brasier CM, Moore D (eds) Evolutionary biology of the fungi. Cambridge University Press, Cambridge, pp 389–403

    Google Scholar 

  • —, Wang MC (1983) Biochemical aspects of morphogenesis inPhytophthora. In: Erwin DC, Bartnicki-Garcia S, Tsao P (eds)Phytophthora. Its biology, taxonomy, ecology, and pathology. American Phytopathological Society, St. Paul, MN, pp 121–137

    Google Scholar 

  • Bouck GB (1971) The structure, origin, isolation, and composition of the tubular mastigonemes of theOchromonas flagellum. J Cell Biol 50: 362–384

    Google Scholar 

  • Bu'Lock JD, Osagie AU (1976) Sterol biosynthesis via cycloartenol inSaprolegnia. Phytochemistry 15: 1249–1251

    Google Scholar 

  • Burr AW, Beakes GW (1994) A comparative study of zoospore and cysts surface structure in saprophytic and fish pathogenicSaprolegnia species (oomycetes fungi) using lectins and monoclonal antibodies. Protoplasma 181: 142–163

    Google Scholar 

  • Burrell RG, Clayton CW, Gallegly ME, Lilly VG (1966) Factors affecting the antigenicity of the mycelium of three species ofPhytophthora. Phytopathology 56: 422–426

    Google Scholar 

  • Cahill DM, Hardham AR (1994) Exploitation of zoospore taxis in the development of a novel dipstick immunoassay for the specific detection ofPhytophthora cinnamomi. Phytopathology 84: 193–200

    Google Scholar 

  • Carlile MJ (1966) The orientation of zoospores and germ-tubes. In: Madelin MF (ed) The fungal spore, Butterworths, London, pp 175–186

    Google Scholar 

  • — (1983) Motility, taxis, and tropism inPhytophthora. In: Erwin DC, Bartnicki-Garcia S, Tsao P (eds)Phytophthora. Its biology, taxonomy, ecology, and pathology. American Phytopathology Society, St. Paul, MN, pp 95–107

    Google Scholar 

  • Cavalier-Smith T (1981) Eukaryote kingdoms: seven or nine? BioSystems 14: 461–481

    Google Scholar 

  • — (1986) The kingdom Chromista: origin and systematics. Prog Phycol Res 4: 309–347

    Google Scholar 

  • Dewey FM (1990) The use of monoclonal antibodies to detect plant invading fungi. In: Schots A (eds) Monoclonal antibodies in agriculture. Pudoc, Wageningen, pp 21–25

    Google Scholar 

  • Dick MW (1989) Phylum Oomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 661–685

    Google Scholar 

  • Dudler R (1990) The single-copy actin gene ofPhytophthora megasperma encodes a protein considerably diverged from any other known actin. Plant Mol Biol 14: 415–422

    Google Scholar 

  • Erwin DC, Bartnicki-Garcia S, Tsao PH (eds) (1983)Phytophthora. Its biology, taxonomy, ecology, and pathology. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Estrada Garcia MT, Green JR, Booth JM, White JG, Callow JA (1989) Monoclonal antibodies to cell surface components of zoospores and cysts of the fungusPythium aphanidermatum reveal species-specific antigens. Exp Mycol 13: 348–355

    Google Scholar 

  • —, Callow JA, Green JR (1990 a) Monoclonal antibodies to the adhesive cell coat secreted byPythium aphanidermatum zoospores recognise 200×103 Mr glycoproteins stored within large peripheral vesicles. J Cell Sci 95: 199–206

    Google Scholar 

  • —, Ray TC, Green JR, Callow JA, Kennedy JF (1990 b) Encystment ofPythium aphanidermatum zoospores is induced by root mucilage polysaccharides, pectin and a monoclonal antibody to a surface antigen. J Exp Biol 41: 693–699

    Google Scholar 

  • Evans PT, Holaway BL, Malmberg RL (1988) Biochemical differentiation in the tobacco flower probed with monoclonal antibodies. Planta 175: 259–269

    Google Scholar 

  • Foster H, Coffey MD, Elwood H, Sogin ML (1990) Sequence analysis of the small subunit ribosomal RNAs of three zoosporic fungi and implications for fungal evolution. Mycologia 82: 306–312

    Google Scholar 

  • Gabor BK, O'Gara ET, Philip BA, Horan DP, Hardham AR (1993) Specificities of monoclonal antibodies toPhytophthora cinnamomi in two rapid diagnostic assays. Plant Dis 77: 1189–1197

    Google Scholar 

  • Gallegly ME (1983) New criteria for classifyingPhytophthora and critique of existing approaches. In: Erwin DC, Bartnicki-Garcia S, Tsao P (eds)Phytophthora. Its biology, taxonomy, ecology, and pathology. American Phytopathological Society, St. Paul, MN, pp 167–172

    Google Scholar 

  • Gubler F, Hardham AR (1988) Secretion of adhesive material during encystment ofPhytophthora cinnamomi zoospores, characterized by immunogold labelling with monoclonal antibodies to components of peripheral vesicles. J Cell Sci 90: 225–235

    Google Scholar 

  • — — (1990) Protein storage in large peripheral vesicles inPhytophthora zoospores and its breakdown after cyst germination. Exp Mycol 14: 393–404

    Google Scholar 

  • — — (1991) The fate of peripheral vesicles in zoospores ofPhytophthora cinnamomi during infection of plants. In: Mendgen K, Lesemann D-E (eds) Electron microscopy of plant pathogenesis. Springer, Berlin Heidelberg New York Tokyo, pp 197–210

    Google Scholar 

  • — —, Duniec J (1989) Characterising adhesiveness ofPhytophthora cinnamomi zoospores during encystment. Protoplasma 149: 24–30

    Google Scholar 

  • Gunderson JH, Elwood H, Ingold A, Kindle K, Sogin ML (1987) Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci USA 84: 5823–5827

    Google Scholar 

  • Halsall DM (1976) Specificity of cytoplasmic and cell-wall antigens from four species ofPhytophthora. J Gen Microbiol 94: 149–158

    Google Scholar 

  • Hardham AR (1985) Studies on the cell surface of zoospores and cysts of the fungusPhytophthora cinnamomi: the influence of fixation on patterns of lectin binding. J Histochem Cytochem 33: 110–118

    Google Scholar 

  • — (1987 a) Ultrastructure and serial section reconstruction of zoospores of the fungusPhytophthora cinnamomi. Exp Mycol 11: 297–306

    Google Scholar 

  • — (1987 b) Microtubules and the flagellar apparatus in zoospores and cysts of the fungusPhytophthora cinnamomi. Protoplasma 137: 109–124

    Google Scholar 

  • — (1989) Lectin and antibody labelling of surface components of spores ofPhytophthora cinnamomi. Aust J Plant Physiol 16: 19–32

    Google Scholar 

  • —, Gubler F (1990) Polarity of attachment of zoospores of a root pathogen and pre-alignment of the emerging germ tube. Cell Biol Int Rep 14: 947–956

    Google Scholar 

  • —, Suzaki E (1986) Encystment of zoospores of the fungus,Phytophthora cinnamomi, is induced by specific lectin and monoclonal antibody binding to the cell surface. Protoplasma 133: 165–173

    Google Scholar 

  • — — (1990) Glycoconjugates on the surface of the pathogenic fungusPhytophthora cinnamomi studied using fluorescence and electron microscopy and flow cytometry. Can J Microbiol 36: 183–192

    Google Scholar 

  • — —, Perkin JL (1985) The detection of monoclonal antibodies specific for surface components on zoospores and cysts ofPhytophthora cinnamomi. Exp Mycol 9: 264–268

    Google Scholar 

  • — — — (1986) Monoclonal antibodies to isolate-, species-and genus-specific components on the surface of zoospores and cysts of the fungusPhytophthora cinnamomi. Can J Bot 64: 311–321

    Google Scholar 

  • —, Gubler F, Duniec J (1991 a) Ultrastructural and immunological studies of zoospores ofPhytophthora. In: Lucas JA, Shattock RC, Shaw DS, Cooke LR (eds)Phytophthora. Cambridge University Press, Cambridge, pp 50–69

    Google Scholar 

  • — — —, Elliott J (1991 b) A review of methods for the production and use of monoclonal antibodies to study zoosporic plant pathogens. J Microsc 162: 305–318

    Google Scholar 

  • Heath IB (1980) Variant mitoses in lower eukaryotes: indicators of the evolution of mitosis? Int Rev Cytol 64: 1–80

    Google Scholar 

  • —, Greenwood AD, Griffiths HB (1970) The origin of flimmer inSaprolegnia, Dictyuchus, Synura andCryptomonas. J Cell Sci 7: 445–461

    Google Scholar 

  • Hemmes DE (1983) Cytology ofPhytophthora. In: Erwin DC, Bartnicki-Garcia S, Tsao PH (eds)Phytophthora. Its biology, taxonomy, ecology, and pathology. American Phytopathological Society, St. Paul, MN, pp 9–40

    Google Scholar 

  • Hill FG, Outka DE (1974) The structure and origin of mastigonemes inOchromonas minute andMonas sp. J Protozool 21: 299–312

    Google Scholar 

  • Hohl HR, Hamamoto ST (1967) Ultrastructural changes during zoospore formation inPhytophthora parasitica. Amer J Bot 54: 1131–1139

    Google Scholar 

  • Holwill MEJ (1982) Dynamics of eukaryotic flagellar movement. In: Amos WB, Duckett JG (eds) Prokaryotic and eukaryotic flagella. Cambridge University Press, Cambridge, pp 289–312

    Google Scholar 

  • Hutter R, DeMoss J (1967) Organization of the tryptophan pathway: a phylogenetic study of the fungi. J Bacteriol 94: 1896–1907

    Google Scholar 

  • Hyde GJ, Hardham AR (1993) Microtubules regulate the generation of polarity in zoospores ofPhytophthora cinnamomi. Eur J Cell Biol 62: 75–85

    Google Scholar 

  • —, Gubler F, Hardham AR (1991 a) Ultrastructure of zoosporogenesis inPhytophthora cinnamomi. Mycol Res 95: 577–591

    Google Scholar 

  • —, Lancelle S, Hepler PK, Hardham AR (1991 b) Freeze substitution reveals a new model for sporangial cleavage inPhytophthora, a result with implications for cytokinesis in other eukaryotes. J Cell Sci 100: 735–748

    Google Scholar 

  • Jahn TL, Landman MD, Fonseca JR (1964) The mechanism of locomotion of flagellates. II. Function of the mastigonemes ofOchromonas. J Protozool 11: 291–296

    Google Scholar 

  • Judelson HS, Michelmore RV (1989) Structure and expression of a gene encoding heat-shock protein Hsp 70 from the oomycete fungusBremia lactucae. Gene 79: 207–217

    Google Scholar 

  • — — (1991) Transient expression of genes in the oomycetePhytophthora infestans usingBremia lactucae regulatory sequences. Curr Genet 19: 453–459

    Google Scholar 

  • —, Tyler BM, Michelmore RW (1991) Transformation of the oomycete pathogen,Phytophthora infestans. Mol Plant Microbe Interact 4: 602–607

    Google Scholar 

  • — — — (1992) Regulatory sequences for expressing genes in oomycete fungi. Mol Gen Genet 234: 138–146

    Google Scholar 

  • —, Coffey MD, Arredondo FR, Tyler BM (1993) Transformation of the oomycete pathogenPhytophthora megasperma f.sp.glycinea occurs by DNA integration into single or multiple chromosomes. Curr Genet 23: 211–218

    Google Scholar 

  • Karlovsky P, Prell HH (1991) The TRP1 gene ofPhytophthora parasitica encoding indole-3-glycerolphosphate synthase-N-(5′-phosphoribosyl)anthranilate isomerase: structure and evolutionary distance from homologous fungal genes. Gene 109: 161–165

    Google Scholar 

  • Kinghorn JR, Moon RP, Unkles SE, Duncan JM (1991) Gene structure and expression inPhytophthora infestans and the development of gene-mediated transformation. In: Lucas JA, Shattock RC, Shaw DS, Cooke LR (eds)Phytophthora. Cambridge University Press, Cambridge, pp 295–311

    Google Scholar 

  • Knox JP, Roberts K (1989) Carbohydrate antigens and lectin receptors of the plasma membrane of carrot cells. Protoplasma 152: 123–129

    Google Scholar 

  • Krywiencyzk J, Dorworth CE (1980) Serological relationships of some fungi of the genusPythium. Can J Bot 58: 1412–1417

    Google Scholar 

  • Leedale GF, Leadbetter BSC, Massalski A (1970) The intracellular origin of flagellar hairs in the Chrysophyceae and Xanthophyceae. J Cell Sci 6: 710–719

    Google Scholar 

  • Lehnen LR Jr, Powell MJ (1988) Cytochemical localization of carbohydrates in zoospores ofSaprolegnia ferax. Mycologia 80: 423–432

    Google Scholar 

  • — — (1989) The role of kinetosome-associated organelles in the attachment of encysting secondary zoospores ofSaprolegnia ferax to substrates. Protoplasma 149: 163–174

    Google Scholar 

  • — — (1993) Characterization of cell surface carbohydrates on asexual spores of the water moldSaprolegnia ferax. Protoplasma 175: 161–172

    Google Scholar 

  • Loiseaux S (1973) Ultrastructure of zoidogenesis in unilocular zoidocysts of several brown algae. J Phycol 9: 277–289

    Google Scholar 

  • MacDonald JD, Duniway JM (1979) Use of fluorescent antibodies to study the survival ofPhytophthora megasperma andP. cinnamomi zoospores in soil. Phytopathology 69: 436–441

    Google Scholar 

  • —, Stites J, Kabashima J (1990) Comparison of serological and culture plate methods for detecting species ofPhytophthora, Pythium, andRhizoctonia in ornamental plants. Plant Dis 74: 665–659

    Google Scholar 

  • Malajczuk N, McComb AJ, Parker CA (1975) An immunofluorescence technique for detectingPhytophthora cinnamomi Rands. Aust J Bot 23: 289–309

    Google Scholar 

  • Manavathu EK, Suryanarayana K, Hasnain SE, Leung W (1988) DNA-mediated transformation in the aquatic filamentous fungusAchlya ambisexualis. J Gen Bicrobiol 134: 2019–2028

    Google Scholar 

  • Margulis L, Schwartz KV (1988) Five kingdoms. An illustrated guide to the phyla of life on earth. WH Freeman, New York

    Google Scholar 

  • Merz WG, Burrell RG, Gallegly ME (1969) A serological comparison of six homothallic species ofPhytophthora. Phytopathology 59: 367–370

    Google Scholar 

  • Moestrup Ø (1982) Flagellar structure in algae: a review, with new observations particularly on the Chrysophyceae, Phaeophyceae (Fucophyceae), Euglenophyceae andReckertia. Phycologia 21: 427–528

    Google Scholar 

  • Mohan SB (1988) Evaluation of antisera raised againstPhytophthora fragariae for detecting the red core disease of strawberries by enzyme-linked immunosorbent assay (ELISA). Plant Pathol 37: 206–216

    Google Scholar 

  • Morris PF, Ward EWB (1992) Chemoattraction of zoospores of the soybean pathogen,Phytophthora sojae, by isoflavones. Physiol Mol Plant Pathol 40: 17–22

    Google Scholar 

  • Petersen FP, Maybroda AM, Grothaus GD, Miller SA (1989) Monoclonal antibodies and methods for fungal pathogen detection. United States Patent no 4,845,197

  • Prell HH, Karlovsky P, Bahnweg G (1991) Towards transformation inPhytophthora nicotianae. In: Lucas JA, Shattock RC, Shaw DS, Cooke LR (eds)Phytophthora. Cambridge University Press, Cambridge, pp 312–325

    Google Scholar 

  • Pscheidt JW, Burkett JZ, Fisher SL, Hamm PB (1992) Sensitivity and clinical use ofPhytophthora-specific immunoassay kits. Plant Dis 76: 928–932

    Google Scholar 

  • Raven PH, Evert RF, Curtis H (1981) Biology of plants. Worth Publishers, New York

    Google Scholar 

  • Ray PM, Steeves TA, Fultz SA (1983) Botany. WB Saunders, Philadelphia, pp 784

    Google Scholar 

  • Reichle RE (1969) Fine structure ofPhytophthora parasitica zoospores. Mycologia 61: 30–51

    Google Scholar 

  • Sachay DJ, Hudspeth DSS, Nadler SA, Hudspeth MES (1993) Oomycete mtDNA:Phytophthora genes for cytochrome c oxidase use an unmodified genetic code and encode proteins most similar to those of plants. Exp Mycol 17: 7–23

    Google Scholar 

  • Sadowski LA, Powell MJ (1990) Cytochemical detection of polysaccharides in zoospores ofAphanomyces euteiches. Can J Bot 68: 1379–1388

    Google Scholar 

  • Sansome ER (1987) Fungal chromosomes as observed with the light microscope. In: Rayner ADM, Brasier CM, Moore D (eds) Evolutionary biology of the fungi. Cambridge University Press, Cambridge, pp 97–113

    Google Scholar 

  • Smith E, Roberts K, Hutchings A, Galfre G (1984) Monoclonal antibodies to the major structural glycoprotein of theChlamydomonas cell wall. Planta 161: 330–338

    Google Scholar 

  • Stamps DJ, Waterhouse GM, Newhook FJ, Hall GS (1990) Revised tabular key to the species ofPhytophthora. CAB International, Wallingford

    Google Scholar 

  • Unkles SE, Moon RP, Hawkins AR, Duncan JM, Kinghorn JR (1991) Actin in the oomycetous fungusPhytophthora infestons is the product of several genes. Gene 100: 105–112

    Google Scholar 

  • Villee CA, Solomon EP, Martin CE, Martin DW, Berg LR, Davis PW (1985) Biology. WB Saunders, Fort Worth, pp 1412

    Google Scholar 

  • Vogel HJ (1965) Lysine biosynthesis and evolution. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 25–40

    Google Scholar 

  • Vujicic R, Colhoun J, Chapman JA (1968) Some observations on the zoospores ofPhytophthora erythroseptica. Trans Br Mycol Soc 51: 125–127

    Google Scholar 

  • Waterhouse GM, Newhook FJ, Stamps DJ (1983) Present criteria for classification ofPhytophthora. In: Erwin DC, Bartnicki-Garcia S, Tsao P (eds)Phytophthora. Its biology, taxonomy, ecology, and pathology. American Phytopathological Society, St. Paul, MN, pp 139–147

    Google Scholar 

  • Werres S (1988) Enzyme-linked immunosorbent assay (ELISA) as a method for detection ofPhytophthora fragariae Hickman in strawberry roots. Nachrichtenbl Deutsch Planzenschutz 40: 146–150

    Google Scholar 

  • White DG (1976) The preparation and use of a fluorescent antibody reagent for the detection ofPhythium graminicola. Phytopathology 66: 523–525

    Google Scholar 

  • Wolters J, Erdmann VA (1988) Cladistic analysis of ribosomal RNAs —the phylogeny of eukaryotes with respect to the endosymbiotic theory. BioSystems 21: 209–214

    Google Scholar 

  • Wycoff KL, Ayers AR (1990) Monoclonal antibodies to surface and extracellular antigens of a fungal plant pathogen,Phytophthora megasperma f. sp.glycinea, recognize specific carbohydrate epitopes. Physiol Mol Plant Pathol 37: 55–79

    Google Scholar 

  • —, Jellison J, Ayers AR (1987) Monoclonal antibodies to glycoprotein antigens of a fungal plant pathogen,Phytophthora megasperma f. sp.glycinea. Plant Physiol 85: 508–515

    Google Scholar 

  • Zentmyer GA (1980)Phytophthora cinnamomi and the diseases it causes. American Phytopathological Society, St. Paul, MN

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardham, A.R., Cahill, D.M., Cope, M. et al. Cell surface antigens ofPhytophthora spores: biological and taxonomic characterization. Protoplasma 181, 213–232 (1994). https://doi.org/10.1007/BF01666397

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01666397

Keywords

Navigation