Skip to main content
Log in

Development of the flagellar apparatus during the cell cycle in unicellular algae

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Recent evidence has shown that algal cells acquire different flagella and a heterogeneous basal apparatus through the prolonged development of these structures over more than one cell cycle. A system for numbering algal flagella and basal bodies, which is based on developmental studies, is discussed along with the various means by which the flagellar/basal body developmental cycle can be determined. We review the information now available on development of the separate components of the flagellar apparatus-this comes particulary from the Chlorophyta and the Chromophyta-and attempt to elucidate any information which may help in phylogenetic comparisons. New data is provided on developmental changes in the cartwheel part of the basal body and basal body-associated connecting fibrils in green algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Bb:

basal body

d:

right (dexter) root

df:

right fibrils connecting Bb triplets to microtubular and/or fibrous roots

EM:

electron microscopy

F:

flagellum

IMF:

immunofluorescence microscopy

LM:

light microscopy

NBBC:

nucleus-basal body connector

s:

left (sinister) root

sf:

3left fibrils connecting Bb triplets to microtubular and/or fibrous roots. See Nomenclature section of Introduction for the numbering of basal bodies and their flagella; the same numbers apply to Bb-associated d and s roots, and df and sf fibrils

References

  • Aitchison WA, Brown DL (1986) Duplication of the flagellar apparatus and the cytoskeletal microtubule system in the algaPolytomella. Cell Motil Cytoskeleton 6: 122–127

    Google Scholar 

  • Andersen RA (1985) The flagellar apparatus of the golden algaSynura uvella: four absolute orientations. Protoplasma 128: 94–106

    Google Scholar 

  • — (1989 a) The Synurophyceae and their relationship to other golden algae. Nova Hedwigia 95: 1–26

    Google Scholar 

  • — (1989 b) Absolute orientation of the flagellar apparatus ofHibberdia magna comb. nov. (Chrysophyceae). Nord J Bot 8: 653–669

    Google Scholar 

  • — (1990) The three-dimensional structure of the flagellar apparatus ofChrysophaerella brevispina (Chrysophyceae) as viewed by highvoltage electron microscopy stereo pairs. Phycologia 29: 86–97

    Google Scholar 

  • —, Barr DJS, Lynn DH, Melkonian M, Moestrup Ø, Sleigh MA (1991) Terminology and nomenclature of the cytoskeleton of flagellate/ciliate protists. Protoplasma 164: 1–8

    Google Scholar 

  • Barlow SB, Cattolico RA (1981) Mitosis and cytokinesis in the Prasinophyceae. I.Mantoniella squamata (Manton and Parke) Desikachary. Amer J Bot 68: 606–615

    Google Scholar 

  • Beech PL, Wetherbee R (1988) Observations on the flagellar apparatus and peripheral endoplasmic reticulum of the coccolithophorid,Pleurochrysis carterae (Prymnesiophyceae). Phycologia 27: 142–158

    Google Scholar 

  • — — (1990 a) Direct observations on flagellar transformation inMallomonas splendens (Synurophyceae). J Phycol 26: 90–95

    Google Scholar 

  • — — (1990 b) The flagellar apparatus ofMallomonas splendens (Synurophyceae) at interphase and its development during the cell cycle. J Phycol 26: 95–111

    Google Scholar 

  • — —, Pickett-Heaps JD (1988) Transformation of the flagella and associated flagellar components during cell division in the coccolithophoridPleurochrysis carterae. Protoplasma 145: 37–46

    Google Scholar 

  • Bouck GB, Brown DL (1973) Microtubule biogenesis and cell shape inOchromonas. I. The distribution of cytoplasmic and mitotic microtubules. J Cell Biol 56: 340–359

    Google Scholar 

  • Cavalier-Smith T (1974) Basal body and flagellar development during the vegetative cell cycle and the sexual cycle ofChlamydomonas reinhardtii. J Cell Sci 16: 529–556

    Google Scholar 

  • Cleveland LR (1963) Functions of flagellate and other centrioles in cell reproduction. In: Levine L (ed) The cell in mitosis. Academic Press, New York, pp 3–53

    Google Scholar 

  • Doflein F (1918) Beiträge zur Kenntnis von Bau und Teilung der Protozoenkerne. Zool Anz 46: 289–306

    Google Scholar 

  • Farmer M, Triemer RE (1988) Flagellar systems in the euglenoid flagellates. BioSystems 21: 283–291

    Google Scholar 

  • Floyd GL, Hoops HJ, Swanson JA (1980) Fine structure of the zoospore ofUlothrix belkae with emphasis on the flagellar apparatus. Protoplasma 104: 17–31

    Google Scholar 

  • Gaffal FP (1988) The basal body-root complex ofChlamydomonas reinhardtii during mitosis. Protoplasma 143: 118–129

    Google Scholar 

  • —, el-Gammal S (1990) Elucidation of the enigma of the ‘metaphase band’ ofChlamydomonas reinhardtii. Protoplasma 156: 139–148

    Google Scholar 

  • Gely C, Wright M (1986) The centriole cycle in the amoebae of the myxomycetePhysarum polycephalum. Protoplasma 132: 23–31

    Google Scholar 

  • Gould RR (1975) The basal bodies ofChlamydomonas reinhardtii: formation from probasal bodies, isolation, and partial characterization. J Cell Biol 65: 65–74

    Google Scholar 

  • Green JC, Hori T (1986) The ultrastructure of the flagellar root system ofImantonia rotunda (Prymnesiophyceae). Br Phycol J 21: 5–18

    Google Scholar 

  • — — (1988) The fine structure of mitosis inPavlova (Prymnesiophyceae). Can J Bot 66: 1497–1509

    Google Scholar 

  • Heimann K, Benting J, Timmermann S, Melkonian M (1989 a) The flagellar developmental cycle in algae: two types of flagellar development in uniflagellated algae. Protoplasma 153: 14–23

    Google Scholar 

  • —, Reize IB, Melkonian M (1989 b) The flagellar developmental cycle in algae: flagellar transformation inCyanophora paradoxa (Glaucocystophyceae). Protoplasma 148: 106–110

    Google Scholar 

  • Holmes JA, Dutcher SK (1989) Cellular asymmetry inChlamydomonas reinhardtii. J Cell Sci 94: 273–285

    Google Scholar 

  • Hoops HJ, Witman GB (1983) Outer doublet heterogeneity reveals structural polarity related to beat direction inChlamydomonas flagella. J Cell Biol 97: 902–908

    Google Scholar 

  • Hori T, Moestrup Ø (1987) Ultrastructure of the flagellar apparatus inPyramimonas octopus (Prasinophyceae) I. Axoneme structure and numbering of peripheral doublets/triplets. Protoplasma 138: 137–148

    Google Scholar 

  • Inouye I, Hori T Chihara M (1990) Absolute configuration analysis of the flagellar apparatus ofPterosperma cristatum (Prasinophyceae) and consideration of its phylogenetic position. J Phycol 26: 329–344

    Google Scholar 

  • Johnson UG, Porter KR (1968) Fine structure of cell division inChlamydomonas reinhardtii: basal bodies and microtubules. J Cell Biol 38: 403–425

    Google Scholar 

  • Kalnins VI, Porter KR (1969) Centriole replication during ciliogenesis in the chick tracheal epithelum. Z Mikrosk Anat Forsch 100: 1–30

    Google Scholar 

  • Kamiya R, Witman GB (1984) Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models ofChlamydomonas. J Cell Biol 98: 97–107

    Google Scholar 

  • Lechtreck K-F, McFadden GI, Melkonian M (1989) The cytoskeleton of the naked green flagellateSpermatozopsis similis: isolation, whole mount electron microscopy, and preliminary biochemical and immunological characterization. Cell Motil Cytoskeleton 14: 552–561

    Google Scholar 

  • —, Melkonian M (1991) An update on fibrous flagellar roots in green algae. Protoplasma 164: 38–44

    Google Scholar 

  • Melkonian M (1980) Ultrastructural aspects of basal body associated fibrous structures in green algae: a critical review. BioSystems 12: 85–104

    Google Scholar 

  • — (1984) Flagellar apparatus ultrastructure in relation to green algal classification. In: Irvine DEG, John DM (eds) Systematics of the green algae. Academic Press, London, pp 73–120

    Google Scholar 

  • — (1989) Centrin-mediated motility: a novel cell motility mechanism in eukaryotic cells. Bot Acta 102: 3–4

    Google Scholar 

  • —, Preisig HR (1984) Ultrastructure of the flagellar apparatus in the green flagellateSpermatozopsis similis. Plant Syst Evol 146: 145–162

    Google Scholar 

  • —, Robenek H (1984) The eyespot apparatus of flagellated green algae: a critical review. Prog Phycol Res 3: 193–268

    Google Scholar 

  • —, Beech PL, Katsaros C, Schulze D (1991) Centrin mediated cell motility in algae. In: Melkonian M (ed) Algal cell motility. Chapman and Hall, New York (in press)

    Google Scholar 

  • —, Schulze D, McFadden GI, Robenek H (1988) A polyclonal antibody (anti-centrin) distinguishes between two types of fibrous flagellar roots in green algae. Protoplasma 144: 56–61

    Google Scholar 

  • —, McFadden GI, Reize IB, Preisig HR (1987 b) A light and electron microscopic study of the quadriflagellate green algaSpermatozopsis exsultans. Plant Syst Evol 158: 47–61

    Google Scholar 

  • —, Reize IB, Preisig HR (1987 a) Maturation of a flagellum/basal body requires more than one cell cycle in algal flagellates: studies onNephroselmis olivacea (Prasinophyceae). In: Wiessner W, Robinson DG, Starr RC (eds) Algal development, molecular and cellular aspects. Springer, Berlin Heidelberg New York Tokyo, pp 102–113

    Google Scholar 

  • Micalef H, Gayral P (1972) Quelques aspects de l'infrastructure des cellules végétatives et des cellules reprodutrices d'Ulva lactuca L. (Chlorophycees). J Microsc 13: 417–428

    Google Scholar 

  • Moestrup Ø (1978) On the phylogenetic validity of the flagellar apparatus in green algae and other chlorophyll a and b containing plants. BioSystems 10: 117–144

    Google Scholar 

  • — (1982) Flagellar structure in algae: a critical review, with new observations particulary on the Chrysophyceae, Phaeophyceae (Fucophyceae), Euglenophyceae, andReckertia. Phycologia 21: 427–528

    Google Scholar 

  • —, Ettl H (1979) A light and electron microscopical study ofNephroselmis olivacea (Prasinophyceae). Opera Bot 49: 1–39

    Google Scholar 

  • —, Hori T (1989) Ultrastructure of the flagellar apparatus inPyramimonas octopus (Prasinophyceae) II. Flagellar roots, connecting fibres, and numbering of individual flagella in green algae. Protoplasma 148: 41–56

    Google Scholar 

  • O'Kelly CJ, Floyd GL (1984) Flagellar apparatus absolute orientations and the phylogeny of the green algae. BioSystems 16: 227–251

    Google Scholar 

  • Owen HA, Mattox KR, Stewart KD (1990) Fine structure of the flagellar apparatus ofDinobryon cylindricum (Chrysophyceae). J Phycol 26: 131–141

    Google Scholar 

  • Pearson BR, Norris RE (1975) Fine structure of cell division inPyramimonas parkeae Norris and Pearson (Chlorophyta, Prasinophyceae). I Phycol 11: 113–124

    Google Scholar 

  • Pickett-Heaps JD (1971) The autonomy of the centriole: fact or fallacy? Cytobios 3: 205–214

    Google Scholar 

  • —, Ott DW (1974) Ultrastructural morphology and cell division inPedinomonas. Cytobios 11: 41–58

    Google Scholar 

  • Preisig HR (1989) The flagellar base ultrastructure and phylogeny of chromophytes. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae: problems and perspectives. Clarendon Press, Oxford, pp 167–187

    Google Scholar 

  • —, Melkonian M (1984) A light and electron microscopical study of the green flagellateSpermatozopsis similis spec. nova. Plant Syst Evol 146: 57–74

    Google Scholar 

  • Randall JT, Cavalier-Smith T, McVittie A, Warr JR, Hopkins JM (1967) Developmental and control processes in the basal bodies and flagella ofChlamydomonas reinhardtii. Dev Biol [Suppl] 1: 43–83

    Google Scholar 

  • Reize IB, Melkonian M (1988) Absolute orientations of basal bodies in green algae evaluated by light microscopy. Bot Acta 101: 192–195

    Google Scholar 

  • Rieder CL, Borisy GG (1982) The centrosome cycle in PtK2 cells: asymmetric distribution and structural changes in the pericentriolar material. Biol Cell 44: 117–132

    Google Scholar 

  • Roberts KR, Roberts JE (1991) The flagellar apparatus and cytoskeleton of the dinoflagellates: a comparative overview. Protoplasma 164: 105–122

    Google Scholar 

  • Salisbury JL (1989) Centrin and the algal flagellar apparatus. J Phycol 25: 201–206

    Google Scholar 

  • —, Baron AT, Sanders MA (1988) The centrin-based cytoskeleton ofChlamydomonas reinhardtii: distribution in interphase and mitotic cells. J Cell Biol 107: 635–641

    Google Scholar 

  • — —, Surek B, Melkonian M (1984) Striated flagellar roots: isolation and partial characterization of a calcium-modulated contractile organelle. J Cell Biol 99: 962–970

    Google Scholar 

  • Schlösser UG (1982) Sammlung von Algenkulturen Göttingen. Ber Deutsch Bot Ges 95: 181–276

    Google Scholar 

  • Schnepf E, Deichgräber G, Röderer G, Herth W (1977) The flagellar root apparatus, the microtubular system and associated organelles in the chrysophycean flagellatePoterioochromonas malhamensis Peterfi (syn.Poterioochromonas stipitata Scherffel andOchromonas malhamensis Pringsheim). Protoplasma 92: 87–107

    Google Scholar 

  • Schulze D, Robenek H, McFadden GI, Melkonian M (1987) Immunolocalization of a Ca2+-modulated contractile protein in the flagellar apparatus of green algae: the nucleus-basal body connector. Eur J Cell Biol 45: 51–61

    Google Scholar 

  • Segaar PJ, Gerritsen AF (1989) Flagellar roots as vital instruments in cellular morphogenesis during multiple fission (sporulation) in the unicellular green flagellateBrachiomonas submarina (Chloromonadales, Chlorophyta). Crypt Bot 1: 249–274

    Google Scholar 

  • Slankis T, Gibbs SP (1972) The fine structure of mitosis and cell division in the chrysophycean algaOchromonas danica. J Phycol 8: 243–256

    Google Scholar 

  • Sleigh MA (1988) Flagellar root maps allow speculative comparisons of root patterns and their ontogeny. BioSystems 21: 277–282

    Google Scholar 

  • Sluiman HJ, Blommers PCJ (1990) Basal apparatus behavior during cellular division (sporulation) in the coccoid green algaClorosarcina. Protoplasma 155: 66–75

    Google Scholar 

  • Stewart KD, Mattox KR, Chandler CD (1974) Mitosis and cytokinesis inPlatymonas subcordiformis, a scaly green monad. J Phycol 10: 65–79

    Google Scholar 

  • Surek B, Melkonian M (1986) A cryptic cytostome is present inEuglena. Protoplasma 133: 39–49

    Google Scholar 

  • Vesk M, Moestrup Ø (1987) The flagellar root system inHeterosigma akashiwo (Raphidophyceae). Protoplasma 137: 15–28

    Google Scholar 

  • —, Hoffman LR, Pickett-Heaps JD (1984) Mitosis and cell divisions inHydrurus foetidus (Chrysophyceae). J Phycol 20: 461–470

    Google Scholar 

  • Vorobjev IA, Nadezhdina ES (1987) The centrosome and its role in the organization of microtubules. Int Rev Cytol 106: 227–293

    Google Scholar 

  • Wetherbee R, Platt SJ, Beech PL, Pickett-Heaps JD (1988) Flagellar transformation in the heterokontEpipyxis pulchra (Chrysophyceae): direct observations using image-enhanced light microscopy. Protoplasma 145: 47–54

    Google Scholar 

  • Woods JK, Triemer RE (1981) Mitosis in the octoflagellatePyramimonas amylifera (Chlorophyta). J Phycol 17: 81–90

    Google Scholar 

  • Wright RL, Adler SA, Spanier JG, Jarvik JW (1989) Nucleus-basal body connector inChlamydomonas: evidence for a role in basal body segregation and against essential roles in mitosis or in determining cell polarity. Cell Motil Cytoskeleton 14: 516–526

    Google Scholar 

  • —, Salisbury JL, Jarvik JW (1985) A nucleus-basal body connector inChlamydomonas reinhardtii that may function in basal body localization or segregation. J Cell Biol 101: 1903–1912

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beech, P.L., Heimann, K. & Melkonian, M. Development of the flagellar apparatus during the cell cycle in unicellular algae. Protoplasma 164, 23–37 (1991). https://doi.org/10.1007/BF01320812

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01320812

Keywords

Navigation