Skip to main content
Log in

Miscibility, morphology and fracture toughness of epoxy resin/poly(vinyl acetate) blends

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Diglycidylether of bisphenol A (DGEBA)/poly(vinyl acetate) (PVAc) blends cured with 4,4′-diaminodiphenylmethane (DDM) were prepared. The miscibility and phase behavior were investigated by means of differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM). The study results indicate that the epoxy precursor (DGEBA)/PVAc blends are clearly miscible at the entire composition and theTg values experimentally obtained are in a good agreement with those predicted by Fox equation. Cured at elevated temperature, all the DDM-cured blends underwent phase separation and display two-phase morphology. When PVAc content is more than 10 wt%, the thermoplastics-modified resins began to show a co-continuous phase structure. It is the cocontinuous structure that leads to a significantly-improved toughness inK ic. Morphologic investigation of the surfaces of fracture mechanic measurement specimens indicates that the toughening effect of the thermoplastics-modified epoxy resins may arise mainly from the ductile yielding of PVAc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. May CA, Tanaka GY (eds) (1973) Epoxy Resin Chemistry and Technology Marcel Dekker, New York

    Google Scholar 

  2. Bauer RS (ed) (1979) Epoxy Resin Chemistry. Advances in Chemistry 114, Am Chem Soc Washington DC

    Google Scholar 

  3. Atkins KE (1978) In: Paul DR, Newman S (eds) Polymer Blends Vol 2, Academic Press, New York

    Google Scholar 

  4. Bucknall CB (1977) Toughened Plastics. Applied Science London

    Google Scholar 

  5. Sultanm JN, McGarry FJ (1973) Polym Eng Sci 13:29

    Google Scholar 

  6. Kunz SC, Sayre JA, Assink RA (1982) Polymer 23:1897

    Google Scholar 

  7. Sasidaran AP, Latha PB, Ramaswamy R (1990) J Appl Polym Sci 41:15

    Google Scholar 

  8. Yee AF, Pearson RA (1986) J Mater Sci 21:2462

    Google Scholar 

  9. Yorkgitis EM, Eiss NS, Tran Jr. C, Wilkes GL, McGrath JE (1985) Am Chem Soc Adv in Polym Sci 72:79

    Google Scholar 

  10. Riew CK, Rowe EH, Siebent AR (1976) Am Chem Soc, Adv Chem Ser 154:326

    Google Scholar 

  11. Meijerink JI, Eguchi S, Ogata M, Ishii T, Amagi S, Numata S, Sashima (1994) Polymer 35:179

    Google Scholar 

  12. Zheng S, Wang H, Dai Q, Luo X, Ma D, Wang K (1995) Makromol Chem 196:269

    Google Scholar 

  13. Kemp TJ, Wilford A, Howarth OW, Lee TCP (1992) Polymer 33:1860

    Google Scholar 

  14. Bussi P, Ishida H (1994) J Appl Polym Sci 32:647

    Google Scholar 

  15. Pearson RA, Yee AF (1986) Polymer 21:2475

    Google Scholar 

  16. MeGarry FJ (1970) Pro Roy Soc, London, A319:59

    Google Scholar 

  17. Diamont J, Moulton RJ (1984) 29th National SAMPE Symposium, California. p 422

  18. Bucknall CB, Partridge IK (1983) Polymer 24:639

    Google Scholar 

  19. Bucknall CB, Gilbert AH (1989) Polymer 3:213

    Google Scholar 

  20. Raghava RS (1987) J Polym Sci Polym Phys Edn 25:1017

    Google Scholar 

  21. Cerere JA, McGrath JE (1986) Polym Prepr 27:299

    Google Scholar 

  22. Hourston DJ, Lane JM (1992) Polymer 33:1397

    Google Scholar 

  23. Hedrick JH, Yilgor I, Wilkens GL, McGrath JE (1985) Polym Bull 13:201

    Google Scholar 

  24. Hedrick JH, Yilgor I, Jurek M, Hedrick JC, Wilkens GL, McGrat JE (1991) Polymer 32:2020

    Google Scholar 

  25. Raghava RS (1988) J Polym Sci Polym Phys Edn 26:65

    Google Scholar 

  26. Gilbert AH, Bucknall CB (1991) Makromol Chem Macromol Symp 45:289

    Google Scholar 

  27. Chen MC, Hourston DJ, Sun WB (1995) Eur Polym J 31:199

    Google Scholar 

  28. Cho JB, Hwang JW, Cho K, An JH, Park CE (1993) Polymer 34:4832

    Google Scholar 

  29. Iijima T, Tochiomoto T, Tomoi M (1991) J Appl Polym Sci 63:311

    Google Scholar 

  30. Guo Q, Huang J, Li B, Chen T, Zhang H, Feng Z (1991) J Appl Polym Sci 63:311

    Google Scholar 

  31. Yee AF, Pearson RA (1990) Polym Mater Sci Eng 63:311

    Google Scholar 

  32. Kinloch AJ, Young RJ (1983) Fracture Behaviour of Polymers, Applied Science, New York

    Google Scholar 

  33. Brandrup J, Immergut EH (eds) (1989) Polymer Handbook, 3rd Edn, John Wiley & Sons In

  34. Fox TG (1956) Bull Am Phys. Soc 1:123

    Google Scholar 

  35. Yamanaka K, Inoue T (1989) Polymer 30:662

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, S., Hu, Y., Guo, Q. et al. Miscibility, morphology and fracture toughness of epoxy resin/poly(vinyl acetate) blends. Colloid Polym Sci 274, 410–417 (1996). https://doi.org/10.1007/BF00652462

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00652462

Key words

Navigation