Skip to main content
Log in

A compensation method to eliminate the spurious term in CA fluid pressure

  • Originals
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The lattice gas automata (LGA) is a microscopic model recently introduced to the field of fluid dynamics. The lattice Boltzmann equation (LBE) is an alternative implementing scheme of the LGA, which is totally free of noise. The modeled fluid is called as the cellular automaton (CA) fluid. It is known that the pressure of the CA fluid contains a velocity dependent part. It reflects the simple and discrete nature of the model and either brings about unphysical oscillation in the flow energy or spoils the pressure field of the simulated flow. In this paper, we begin with a general introduction of the lattice gas models. Then we give a full description for such spurious terms and suggest a compensation method to eliminate the effect in the lattice Boltzmann model. Four numerical simulations are used as illustration for the effectiveness of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Benzi, R.; Succi, S. 1990: Two-dimensional turbulence with Lattice Boltzmann equation. J. Phys. A: Math. Gen. 23: L. 1–5

    Google Scholar 

  • Boon, J. P. 1991: Statistical mechanics and hydrodynamics of lattice gas automata: an overview. Physica D. 47: 3–8

    Google Scholar 

  • Chen, S.; She, Zhen-Su; Harrison, L. C.; Doolen, G. D. 1989: Optimal initial condition for lattice-gas hydrodynamics. Phys. Rev. A 39(5): 2725–2727

    Google Scholar 

  • Chen, Shiyi; Chen, Hudong; Doolen, G. D. 1989: How the lattice gas model for the Navier-Stokes equation improves when a new speed is added. Complex System 3: 243–251

    Google Scholar 

  • Chen, Y. 1991: Lattice gas automata on computational fluid dynamics. Master Thesis, 55–58

  • Clavin, P.; d'Humières, D.; Lallemand, P.; Pomeau, Y. 1986: Cellular automata for hydrodynamics with free boundaries in two and three dimensions. Comptes Rendus de l'Acadèmie des Science de Paris 303, II, pp. 1169

  • Cliffe, K. A.; Kingdon, R. D.; Schofield, P.; Stopford, P. J. 1991: Lattice gas simulations of free-boundary flows. Physica D. 47: 275–281

    Google Scholar 

  • Frisch, U.; d'Humières, D.; Hasslacher, B.; Lallemand, P.; Pomeau, Y.; Rivet, J.-P. 1987: Lattice gas hydrodynamics in two and three dimensions. Complex System 1: 649–707

    Google Scholar 

  • Gatignol, T. 1975: Theorie cinetique des gaz a repartition discrete de vitesses. Lecture Notes in Physics, vol. 36. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Gresho, P. M. 1991: Incompressible fluid dynamics: some fundamental formulation issues. Ann. Rev. Fluid Mech. 23: 413–453

    Google Scholar 

  • Higuera, F. J.; Succi, S.; Benzi, R. 1989: Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9(4): 345–349

    Google Scholar 

  • Higuera, F. J. 1990: Modified lattice gas method for high Reynolds number incompressible flows. In: Verheggen, T. M. M. (ed.): Lecture notes in physics, numerical methods for simulation of multi-phase and complex flow. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • d'Humières, D.; Lallemand, P. 1987: Numerical simulations of hyrodynamics with lattice gas automata in two dimensions. Complex System 1: 599–632

    Google Scholar 

  • Jeulin, D. 1990: Flow and diffusion in random porous media from lattice gas simulations. In: Verheggen, T. M. M. (ed.): Lecture notes in physics, numerical methods for simulation of multi-phase and complex flow. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Lawniczak, A.; Dab, D.; Kapral, R.; Boon, J. P. 1991: Reactive lattice gas automata. Physica D. 47: 132–159

    Google Scholar 

  • McNamara, G. G.; Zanetti, G. 1988: Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Letts. 61(20): 2332–2335

    Google Scholar 

  • Morgan, K.; Periaux, J.; Thomasset, F. 1984: Analysis of laminar flow over a backward facing step: a GAMM-workshop. Notes on numerical fluid mechanics, vol. 9. Brauschweig: Vieweg

    Google Scholar 

  • Naitoh, T.; Ernst, M. H.; van derHoef, M. A.; Frenkel, D. 1991: Extended mode coupling and simulations in cellular-automata fluids. Phys. Rev. A 44(4): 2484–2494

    Google Scholar 

  • Noullez, A.; Boon, J. P. 1991: Long-time correlations in a 2D lattice gas. Physica D. 47: 212–215

    Google Scholar 

  • Orszag, Steven A.; Yakhot, Victor 1986: Reynolds number scaling of cellular-automaton hydrodynamics. Phys. Rev. Letts. 56(16): 269–274

    Google Scholar 

  • Qian, Y. H.; d'Humières, D.; Lallemand, P. 1992: Lattice BGK models for Navier-Stokes equation. Europhys. Letts. 17(6): 479–484

    Google Scholar 

  • Rothman, D. H. 1989: Immiscible lattice gases: new results, new models. In: Manneville, P. et al. (eds.): Lecture notes in physics, cellular automata and modeling of complex physical systems. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Wolfram, S. 1986: Cellular automaton fluids 1: basic theory. J. Stat. Phys. 45: 471–526

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Yagawa, 28 June 1993

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Ohashi, H. & Akiyama, M. A compensation method to eliminate the spurious term in CA fluid pressure. Computational Mechanics 13, 391–399 (1994). https://doi.org/10.1007/BF00374236

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00374236

Keywords

Navigation