Skip to main content
Log in

Microwave transmission, reflection and dielectric properties of conducting and semiconducting polypyrrole films and powders

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microwave transmission, reflection and some dielectric properties of the conducting polymer, polypyrrole, are presented. Methods are discussed for determining microwave transmission and reflection of electrochemically synthesized and doped polypyrrole films with conductivities ranging from 0.1–5000 S m−1. Polypyrrole films were placed between waveguides and irradiated with microwaves centred at frequencies 2.45 and 10 GHz with 0.1 GHz span. The results indicate that the conductivity of doped polypyrrole films has a significant effect on both transmission and reflection. Microwave opacity of polypyrrole varied with the synthesis conditions of the polymer. Samples with low conductivity exhibited high transmission whereas low transmission readings were observed with highly conducting films. Dielectric properties are also presented for frequencies from 100 to 106 Hz in a temperature range of 90–280 K and at microwave frequencies of 2.45 and 10 GHz. These measurements indicate that the real and imaginary parts of the dielectric constant increase in magnitude with increasing doping level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. S. Maddison and J. Unsworth, Synth. Met. 30, (1989) 47.

    CAS  Google Scholar 

  2. J. Unsworth, P. C. Innis, B. A. Lunn, Zheshi Jin and G. P. Norton, Synth. Met. 53 (1992) 59.

    CAS  Google Scholar 

  3. K. L. Ngai and R. W. Rendell, in “Handbook of conducting polymers”, Vol. 2, edited by T. A. Skotheim (Marcel Dekker, New York & Basel, 1986). Ch. 28.

    Google Scholar 

  4. A. J. Epstein, ibid.in “, Ch. 29.

    Google Scholar 

  5. A. K. Jonscher, Nature 267 (1977) 673.

    Article  CAS  Google Scholar 

  6. J. Ulanski, D. T. Glatzhofer, M. Przybylski, F. Kremer, A. Gleitz and G. Wegner, Polymer 28 (1987) 859.

    Article  CAS  Google Scholar 

  7. G. Phillips, R. Suresh, J. Waldman, J. Kumar, J. I-Chien, S. Tripathy and J.C. Huang, J. Appl. Phys. 69 (1991) 899.

    Article  CAS  Google Scholar 

  8. H. H. S. Javadi, K. R. Cromack, A. G. Macdiarmid and A. J. Epstein, Phys. Rev. B 39 (1989) 3579.

    Article  CAS  Google Scholar 

  9. J. Jow, M. C. Hawley, M. Finzel, J. Asmussen, Jr, H-H. Lin and B. Manning, IEEE Trans. Microwave Theory Tech. MTT-35 (1987) 1435.

    Google Scholar 

  10. N. L. Conger and S. E. Tung, Rev. Sci. Instrum. 38 (1967) 384.

    CAS  Google Scholar 

  11. A. Kumar and D. G. Smith, in Proceedings of Dielectric Materials, Measurements and Applications, (IEEE, 1975, UK) p. 151.

    Google Scholar 

  12. W. R. Tinga and S. O. Nelson, J. Microwave Power 8 (1973) 23.

    Google Scholar 

  13. S. A. Paipetis, G. M. Tsangaris and A. J. Kontopoulos, Engng. Appl. New Comp. (1988) 440.

  14. J. C. Dyre, J. Non-Cryst. Solids 135 (1991) 219

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unsworth, J., Kaynak, A., Lunn, B.A. et al. Microwave transmission, reflection and dielectric properties of conducting and semiconducting polypyrrole films and powders. JOURNAL OF MATERIALS SCIENCE 28, 3307–3312 (1993). https://doi.org/10.1007/BF00354252

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00354252

Keywords

Navigation