Skip to main content

Applications of Electrospun Nanofibers for Electronic Devices

  • Reference work entry
  • First Online:
Handbook of Smart Textiles

Abstract

In recent decades, electrospinning of nanofibers has progressed very rapidly in both scientific and technological aspects, and electrospun nanofibers have shown enormous potential for various applications. In particular, electrospun nanofibers have significantly enhanced the application performance of many electronic devices, such as solar cells, mechanical-to-electric energy harvesters, rechargeable batteries, supercapacitors, sensors, field-effect transistors, diodes, photodetectors, and electrochromic devices. This chapter provides a comprehensive summary on the recent progress in the application of electrospun nanofibers in electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170

    Article  Google Scholar 

  2. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46(30):5670–5703

    Article  Google Scholar 

  3. Fang J, Niu H, Lin T, Wang X (2008) Applications of electrospun nanofibers. Chin Sci Bull 53(15):2265–2286

    Article  Google Scholar 

  4. Cavaliere S, Subianto S, Savych I, Jones DJ, Rozière J (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4(12):4761–4785

    Article  Google Scholar 

  5. Longo C, De Paoli M-A (2003) Dye-sensitized solar cells: a successful combination of materials. J Braz Chem Soc 14:898–901

    Article  Google Scholar 

  6. Fujihara K, Kumar A, Jose R, Ramakrishna S, Uchida S (2007) Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell. Nanotechnology 18(36):365709

    Article  Google Scholar 

  7. Joshi P, Zhang L, Davoux D, Zhu Z, Galipeau D, Fong H, Qiao Q (2010) Composite of TiO2 nanofibers and nanoparticles for dye-sensitized solar cells with significantly improved efficiency. Energy Environ Sci 3(10):1507–1510

    Article  Google Scholar 

  8. Listorti A, O’Regan B, Durrant JR (2011) Electron transfer dynamics in dye-sensitized solar cells. Chem Mater 23(15):3381–3399

    Article  Google Scholar 

  9. Mu Jo S, Yeon Song M, Rack Ahn Y, Rae Park C, Young Kim D (2005) Nanofibril formation of electrospun TiO2 fibers and its application to dye-sensitized solar cells. J Macromol Sci A 42(11):1529–1540

    Article  Google Scholar 

  10. Chang C, Tran VH, Wang J, Fuh YK, Lin L (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10(2):726–731

    Article  Google Scholar 

  11. Fang J, Wang X, Lin T (2011) Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes. J Mater Chem 21(30):11088–11091

    Article  Google Scholar 

  12. Fang J,Niu H, Wang H, Wang X, LinT (2013) Enhanced mechanical energy harvesting using needleless electrospun poly (vinylidene fluoride) nanofibre webs. Energy Environ Sci 6(7): 2196–2202

    Google Scholar 

  13. Zeng W, Tao X-M, Chen S, Shang S, Chan HLW, Choy SH (2013) Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ Sci 6(9):2631–2638

    Article  Google Scholar 

  14. Persano L, Dagdeviren C, Su Y, Zhang Y, Girardo S, Pisignano D, Huang Y, Rogers JA (2013) High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat Commun 4:1633

    Article  Google Scholar 

  15. Hansen BJ, Liu Y, Yang R, Wang ZL (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4(7):3647–3652

    Article  Google Scholar 

  16. Mandal D, Yoon S, Kim KJ (2011) Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor. Macromol Rapid Commun 32(11):831–837

    Article  Google Scholar 

  17. Liu Z, Jiang W, Kong Q, Zhang C, Han P, Wang X, Yao J, Cui G (2013) A core@sheath nanofibrous separator for lithium ion batteries obtained by coaxial electrospinning. Macromol Mater Eng 298(7):806–813

    Article  Google Scholar 

  18. Dong Z, Kennedy SJ, Wu Y (2011) Electrospinning materials for energy-related applications and devices. J Power Sources 196(11):4886–4904

    Article  Google Scholar 

  19. Liu S, Wang Z, Yu C, Wu HB, Wang G, Dong Q, Qiu J, Eychmüller A, Lou XW (2013) A flexible TiO2(B)-based battery electrode with superior power rate and ultralong cycle life. Adv Mater 25(25):3462–3467

    Article  Google Scholar 

  20. Jayaraman S, Aravindan V, Suresh Kumar P, Chui Ling W, Ramakrishna S, Madhavi S (2014) Exceptional performance of TiNb2O7 anode in all one-dimensional architecture by electrospinning. ACS Appl Mater Interfaces 6(11):8660–8666

    Article  Google Scholar 

  21. Gu Y, Chen D, Jiao X, Liu F (2007) LiCoO2-MgO coaxial fibers: co-electrospun fabrication, characterization and electrochemical properties. J Mater Chem 17(18):1769–1776

    Article  Google Scholar 

  22. Niu H, Zhang J, Xie Z, Wang X, Lin T (2011) Preparation, structure and supercapacitance of bonded carbon nanofiber electrode materials. Carbon 49(7):2380–2388

    Article  Google Scholar 

  23. Laforgue A (2011) All-textile flexible supercapacitors using electrospun poly(3,4-ethylenedioxythiophene) nanofibers. J Power Sources 196(1):559–564

    Article  Google Scholar 

  24. Li X, Gu T, Wei B (2012) Dynamic and galvanic stability of stretchable supercapacitors. Nano Lett 12(12):6366–6371

    Article  Google Scholar 

  25. Wang Y-S, Li S-M, Hsiao S-T, Liao W-H, Chen P-H, Yang S-Y, Tien H-W, Ma C-CM, Hu C-C (2014) Integration of tailored reduced graphene oxide nanosheets and electrospun polyamide-66 nanofabrics for a flexible supercapacitor with high-volume- and high-area-specific capacitance. Carbon 73:87–98

    Article  Google Scholar 

  26. Kim C, Yang KS (2003) Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl Phys Lett 83(6):1216–1218

    Article  Google Scholar 

  27. Ding B, Wang M, Yu J, Sun G (2009) Gas sensors based on electrospun nanofibers. Sensors 9(3):1609–1624

    Article  Google Scholar 

  28. Yun YJ, Hong WG, Choi N-J, Park HJ, Moon SE, Kim BH, Song K-B, Jun Y, Lee H-K (2014) A 3D scaffold for ultra-sensitive reduced graphene oxide gas sensors. Nanoscale 6(12):6511–6514

    Article  Google Scholar 

  29. Jang B-H, Landau O, Choi S-J, Shin J, Rothschild A, Kim I-D (2013) Selectivity enhancement of SnO2 nanofiber gas sensors by functionalization with Pt nanocatalysts and manipulation of the operation temperature. Sens Actuators B 188:156–168

    Article  Google Scholar 

  30. Yang G, Kampstra KL, Abidian MR (2014) High performance conducting polymer nanofiber biosensors for detection of biomolecules. Adv Mater 26(29):4954–4960

    Article  Google Scholar 

  31. Liu H, Reccius CH, Craighead HG (2005) Single electrospun regioregular poly(3-hexylthiophene) nanofiber field-effect transistor. Appl Phys Lett 87(25):1–3

    Google Scholar 

  32. Lee SW, Lee HJ, Choi JH, Koh WG, Myoung JM, Hur JH, Park JJ, Cho JH, Jeong U (2010) Periodic array of polyelectrolyte-gated organic transistors from electrospun poly(3-hexylthiophene) nanofibers. Nano Lett 10(1):347–351

    Article  Google Scholar 

  33. Wang W, Lu X, Li Z, Lei J, Liu X, Wang Z, Zhang H, Wang C (2011) One-dimensional polyelectrolyte/polymeric semiconductor core/shell structure: sulfonated poly(arylene ether ketone)/polyaniline nanofibers for organic field-effect transistors. Adv Mater 23(43):5109–5112

    Article  Google Scholar 

  34. Manuelli A, Persano L, Pisignano D (2014) Flexible organic field-effect transistors based on electrospun conjugated polymer nanofibers with high bending stability. Org Electron Phys Mater Appl 15(5):1056–1061

    Google Scholar 

  35. Parrag IC, Zandstra PW, Woodhouse KA (2012) Fiber alignment and coculture with fibroblasts improves the differentiated phenotype of murine embryonic stem cell-derived cardiomyocytes for cardiac tissue engineering. Biotechnol Bioeng 109(3):813–822

    Article  Google Scholar 

  36. Rivera R, Pinto NJ (2009) Schottky diodes based on electrospun polyaniline nanofibers: effects of varying fiber diameter and doping level on device performance. Phys E Low Dimens Syst Nanostruct 41(3):423–426

    Article  Google Scholar 

  37. Zhou Z, Wu X-F (2013) Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: synthesis and electrochemical characterization. J Power Sources 222:410–416

    Article  Google Scholar 

  38. Wu H, Hu L, Rowell MW, Kong D, Cha JJ, McDonough JR, Zhu J, Yang Y, McGehee MD, Cui Y (2010) Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett 10(10):4242–4248

    Article  Google Scholar 

  39. Fang J, Wang X, Lin T (2013) Nanofibrous p-n junction and its rectifying characteristics. J Nanomater 758395:1–7

    Google Scholar 

  40. Pinto NJ, Carrasquillo KV, Rodd CM, Agarwal R (2009) Rectifying junctions of tin oxide and poly(3-hexylthiophene) nanofibers fabricated via electrospinning. Appl Phys Lett 94(8):083504

    Article  Google Scholar 

  41. Lotus AF, Bhargava S, Bender ET, Evans EA, Ramsier RD, Reneker DH, Chase GG (2009) Electrospinning route for the fabrication of p-n junction using nanofiber yarns. J Appl Phys 106(1):14303

    Article  Google Scholar 

  42. Gu Y, Zhang Q, Wang H, Li Y (2011) CaSi2O2N2: Eu nanofiber mat based on electrospinning: facile synthesis, uniform arrangement, and application in white LEDs. J Mater Chem 21(44):17790–17797

    Article  Google Scholar 

  43. Dhakal KP, Lee H, Kim J (2014) White light-emitting LED using electrospun Alq3/P3BT composite microfibers. Synth Met 190:44–47

    Article  Google Scholar 

  44. http://www.rti.org/page.cfm?obj=AA8E3EE5-5056-B100-318259D0069AA638

  45. Wu H, Sun Y, Lin D, Zhang R, Zhang C, Pan W (2009) GaN nanofibers based on electrospinning: facile synthesis, controlled assembly, precise doping, and application as high performance UV photodetector. Adv Mater 21(2):227–231

    Article  Google Scholar 

  46. Zhu L, Gu X, Qu F, Zhang J, Feng C, Zhou J, Ruan S, Kang B (2013) Electrospun ZnO nanofibers-based ultraviolet detector with high responsivity. J Am Ceram Soc 96(10):3183–3187

    Google Scholar 

  47. Gu X, Zhang M, Meng F, Zhang X, Chen Y, Ruan S (2014) Influences of different interdigital spacing on the performance of UV photodetectors based on ZnO nanofibers. Appl Surf Sci 307:20–23

    Article  Google Scholar 

  48. Shim HS, Kim JW, Sung YE, Kim WB (2009) Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method. Sol Energy Mater Sol Cells 93(12):2062–2068

    Article  Google Scholar 

  49. Zhou R, Liu W, Kong J, Zhou D, Ding G, Leong YW, Pallathadka PK, Lu X (2014) Chemically cross-linked ultrathin electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofibrous mats as ionic liquid host in electrochromic devices. Polymer 55(6):1520–1526

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Fang, J., Shao, H., Niu, H., Lin, T. (2015). Applications of Electrospun Nanofibers for Electronic Devices. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-45-1_32

Download citation

Publish with us

Policies and ethics