Skip to main content

Revolutionizing Causal Circuitry Neurostimulation Utilizing the Optogenetic Technique Through Advanced Microsystems Development

  • Chapter
  • First Online:
  • 1031 Accesses

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

Optogenetics has recently emerged to become one of the most significant tools for in vivo causal analysis of neural networks. Developed through decades of pioneering work, the optogenetic toolbox has expanded utility to allow virtually total control over cellular actions. This article explores the emerging technologies that have been incorporated into making optogenetics a versatile technique in neuroscience research. Genetically engineered opsins continually evolve to directly activate or inhibit neuronal transmission with greater precision and functionality. A variety of light sources and fiber coupling methods employ unique photoactivation patterns and shapes. This article further explores the novel devices and systems that have been developed for the research setting and the technologies each system incorporates. These tethered systems, portable devices, and implantable microdevices have inherent benefits and detriments that are also discussed. Finally, emerging translational properties of optogenetics, particularly that for retinal pigmentosa, demonstrate how optogenetics may one day precipitate out of the research setting and into our healthcare practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adamantidis, A., Arber, S., Bains, J.S., Bamberg, E., Bonci, A., Buzsáki, G., Cardin, J.A., Costa, R.M., Dan, Y., Goda, Y.: Optogenetics: 10 years after ChR2 in neurons [mdash] views from the community. Nat. Neurosci. 18(9), 1202–1212 (2015)

    Article  Google Scholar 

  2. Aravanis, A.M., Wang, L.-P., Zhang, F., Meltzer, L.A., Mogri, M.Z., Schneider, M.B., Deisseroth, K.: An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4(3), S143 (2007)

    Article  Google Scholar 

  3. Arenkiel, B.R., Peca, J., Davison, I.G., Feliciano, C., Deisseroth, K., Augustine, G.J., Ehlers, M.D., Feng, G.: In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54(2), 205–218 (2007). doi:10.1016/j.neuron.2007.03.005

    Article  Google Scholar 

  4. Armand, M., Tarascon, J.-M.: Building better batteries. Nature 451(7179), 652–657 (2008)

    Article  Google Scholar 

  5. Asher, A., Segal, W., Baccus, S., Yaroslavsky, L.P., Palanker, D.V.: Image processing for a high-resolution optoelectronic retinal prosthesis. IEEE Trans. Biomed. Eng. 54(6), 993–1004 (2007)

    Article  Google Scholar 

  6. Berndt, A., Lee, S.Y., Ramakrishnan, C., Deisseroth, K.: Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344(6182), 420–424 (2014)

    Article  Google Scholar 

  7. Boyden, E.S.: Optogenetics: using light to control the brain. Cerebrum: the Dana forum on brain science 2011, 16 (2011)

    Google Scholar 

  8. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K.: Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8(9), 1263–1268 (2005)

    Article  Google Scholar 

  9. Brodd, R.J., Bullock, K.R., Leising, R.A., Middaugh, R.L., Miller, J.R., Takeuchi, E.: Batteries, 1977 to 2002. J. Electrochem. Soc. 151(3), K1–K11 (2004)

    Article  Google Scholar 

  10. Busskamp, V., Roska, B.: Optogenetic approaches to restoring visual function in retinitis pigmentosa. Curr. Opin. Neurobiol. 21(6), 942–946 (2011)

    Article  Google Scholar 

  11. Cao, H., Gu, L., Mohanty, S.K., Chiao, J.: An integrated μLED optrode for optogenetic stimulation and electrical recording. IEEE Trans. Biomed. Eng. 60(1), 225–229 (2013)

    Article  Google Scholar 

  12. Caplan, A.L., Parent, B., Shen, M., Plunkett, C.: No time to waste—the ethical challenges created by CRISPR. EMBO Rep. 16(11), 1421–1426 (2015)

    Article  Google Scholar 

  13. Cardin, J.A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.-H., Moore, C.I.: Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat. Protoc. 5(2), 247–254 (2010)

    Article  Google Scholar 

  14. Carter, M.E., de Lecea, L.: Optogenetic investigation of neural circuits in vivo. Trends Mol. Med. 17(4), 197–206 (2011)

    Article  Google Scholar 

  15. Chow, B.Y., Boyden, E.S.: Optogenetics and translational medicine. Science translational medicine 5(177), 177ps175–177ps175 (2013)

    Google Scholar 

  16. Chow, B.Y., Han, X., Dobry, A.S., Qian, X., Chuong, A.S., Li, M., Henninger, M.A., Belfort, G.M., Lin, Y., Monahan, P.E.: High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463(7277), 98–102 (2010)

    Article  Google Scholar 

  17. Clements, I.P., Gnade, A.G., Rush, A.D., Patten, C.D., Twomey, M.C., Kravitz, A.V.: Miniaturized LED sources for in vivo optogenetic experimentation. In: SPIE BiOS, 2013. International Society for Optics and Photonics, pp. 85860X-85860X-85869

    Google Scholar 

  18. Dalkara, D., Kolstad, K.D., Caporale, N., Visel, M., Klimczak, R.R., Schaffer, D.V., Flannery, J.G.: Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol. Ther. 17(12), 2096–2102 (2009)

    Article  Google Scholar 

  19. Degenaar, P., Grossman, N., Memon, M.A., Burrone, J., Dawson, M., Drakakis, E., Neil, M., Nikolic, K.: Optobionic vision—a new genetically enhanced light on retinal prosthesis. J. Neural Eng. 6(3), 035007 (2009)

    Article  Google Scholar 

  20. Dinner, D.S., Neme, S., Nair, D., Montgomery, E.B., Baker, K.B., Rezai, A., Lüders, H.O.: EEG and evoked potential recording from the subthalamic nucleus for deep brain stimulation of intractable epilepsy. Clin. Neurophysiol. 113(9), 1391–1402 (2002)

    Article  Google Scholar 

  21. Duschl, A., Lanyi, J.K., Zimanyi, L.: Properties and photochemistry of a halorhodopsin from the haloalkalophile, Natronobacterium pharaonis. J. Biol. Chem. 265(3), 1261–1267 (1990)

    Google Scholar 

  22. Filali, M., Hutchison, W.D., Palter, V.N., Lozano, A.M., Dostrovsky, J.O.: Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp. Brain Res. 156(3), 274–281 (2004)

    Article  Google Scholar 

  23. Fork, R.L.: Laser stimulation of nerve cells in Aplysia. Science 171(3974), 907–908 (1971)

    Article  Google Scholar 

  24. Gagnon-Turcotte, G., Kisomi, A.A., Ameli, R., Camaro, C.-O.D., LeChasseur, Y., Néron, J.-L., Bareil, P.B., Fortier, P., Bories, C., De Koninck, Y.: A wireless optogenetic headstage with multichannel electrophysiological recording capability. Sensors 15(9), 22776–22797 (2015)

    Article  Google Scholar 

  25. Goetz, G., Mandel, Y., Manivanh, R., Palanker, D., Čižmár, T.: Holographic display system for restoration of sight to the blind. J. Neural Eng. 10(5), 056021 (2013)

    Article  Google Scholar 

  26. Gradinaru, V., Mogri, M., Thompson, K.R., Henderson, J.M., Deisseroth, K.: Optical deconstruction of parkinsonian neural circuitry. Science 324(5925), 354–359 (2009)

    Article  Google Scholar 

  27. Gradinaru, V., Thompson, K.R., Deisseroth, K.: eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain cell biology 36(1–4), 129–139 (2008)

    Article  Google Scholar 

  28. Gradinaru, V., Thompson, K.R., Zhang, F., Mogri, M., Kay, K., Schneider, M.B., Deisseroth, K.: Targeting and readout strategies for fast optical neural control in vitro and in vivo. J. Neurosci. 27(52), 14231–14238 (2007)

    Article  Google Scholar 

  29. Gradinaru, V., Zhang, F., Ramakrishnan, C., Mattis, J., Prakash, R., Diester, I., Goshen, I., Thompson, K.R., Deisseroth, K.: Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141(1), 154–165 (2010)

    Article  Google Scholar 

  30. Grossman, N., Nikolic, K., Toumazou, C., Degenaar, P.: Modeling study of the light stimulation of a neuron cell with channelrhodopsin-2 mutants. IEEE Trans. Biomed. Eng. 58(6), 1742–1751 (2011)

    Article  Google Scholar 

  31. Grossman, N., Poher, V., Grubb, M.S., Kennedy, G.T., Nikolic, K., McGovern, B., Palmini, R.B., Gong, Z., Drakakis, E.M., Neil, M.A.: Multi-site optical excitation using ChR2 and micro-LED array. J. Neural Eng. 7(1), 016004 (2010)

    Article  Google Scholar 

  32. Gunaydin, L.A., Yizhar, O., Berndt, A., Sohal, V.S., Deisseroth, K., Hegemann, P.: Ultrafast optogenetic control. Nat. Neurosci. 13(3), 387–392 (2010)

    Article  Google Scholar 

  33. Han, X., Chow, B.Y., Zhou, H., Klapoetke, N.C., Chuong, A., Rajimehr, R., Yang, A., Baratta, M.V., Winkle, J., Desimone, R.: A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front. Syst. Neurosci. 5 (2011)

    Google Scholar 

  34. Han, X., Qian, X., Bernstein, J.G., H-H, Zhou, Franzesi, G.T., Stern, P., Bronson, R.T., Graybiel, A.M., Desimone, R., Boyden, E.S.: Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62(2), 191–198 (2009)

    Article  Google Scholar 

  35. Hanks, T.D., Kopec, C.D., Brunton, B.W., Duan, C.A., Erlich, J.C., Brody, C.D.: Distinct relationships of parietal and prefrontal cortices to evidence accumulation. Nature 520(7546), 220–223 (2015)

    Article  Google Scholar 

  36. Heiney, S.A., Kim, J., Augustine, G.J., Medina, J.F.: Precise control of movement kinematics by optogenetic inhibition of Purkinje cell activity. J. Neurosci. 34(6), 2321–2330 (2014)

    Article  Google Scholar 

  37. Henriksen, B.S., Marc, R.E., Bernstein, P.S.: Optogenetics for retinal disorders. J. Ophthal. Vision Res. 9(3), 374 (2014)

    Google Scholar 

  38. Ho, J.S., Kim, S., Poon, A.S.: Midfield wireless powering for implantable systems. Proc. IEEE 101(6), 1369–1378 (2013)

    Article  Google Scholar 

  39. Hosain, M.K., Kouzani, A.Z., Tye, S.J., Abulseoud, O., Amiet, A., Galehdar, A., Kaynak, A., Berk, M.: Development of a compact rectenna for wireless powering of a head-mountable deep brain stimulation device. IEEE J. Transl. Eng. Health Med. 2, 1–13 (2014)

    Article  Google Scholar 

  40. Huber, D., Petreanu, L., Ghitani, N., Ranade, S., Hromádka, T., Mainen, Z., Svoboda, K.: Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451(7174), 61–64 (2008)

    Article  Google Scholar 

  41. Iwai, Y., Honda, S., Ozeki, H., Hashimoto, M., Hirase, H.: A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci. Res. 70(1), 124–127 (2011)

    Article  Google Scholar 

  42. Kale, R.P., Kouzani, A.Z., Berk, M., Walder, K., Berk, J., Tye, S.J.: Wireless optogenetics: an exploration of portable microdevices for small animal photostimulation. Proc. Technol. 20, 225–230 (2015)

    Article  Google Scholar 

  43. Kale, R.P., Kouzani, A.Z., Walder, K., Berk, M., Tye, S.J.: Evolution of optogenetic microdevices. Neurophotonics 2(3), 031206–031206 (2015)

    Article  Google Scholar 

  44. Kent, A., Grill, W.: Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact. J. Neural Eng. 9(3), 036004 (2012)

    Article  Google Scholar 

  45. Kim, T.-I., McCall, J.G., Jung, Y.H., Huang, X., Siuda, E.R., Li, Y., Song, J., Song, Y.M., Pao, H.A., Kim, R.-H.: Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340(6129), 211–216 (2013)

    Article  Google Scholar 

  46. Klorig, D.C., Godwin, D.W.: A magnetic rotary optical fiber connector for optogenetic experiments in freely moving animals. J. Neurosci. Methods 227, 132–139 (2014)

    Article  Google Scholar 

  47. Kwon, K.Y., Sirowatka, B., Weber, A., Li, W.: Opto-array: a hybrid neural interface with transparent electrode array and integrated LEDs for optogenetics. IEEE Trans. Biomed. Circuits Syst. 7(5), 593–600 (2013)

    Article  Google Scholar 

  48. Land, B.B., Brayton, C.E., Furman, K.E., LaPalombara, Z., DiLeone, R.J.: Optogenetic inhibition of neurons by internal light production. Front. Behav. Neurosci. 8 (2014)

    Google Scholar 

  49. Lin, J.Y., Knutsen, P.M., Muller, A., Kleinfeld, D., Tsien, R.Y.: ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16(10), 1499–1508 (2013)

    Article  Google Scholar 

  50. Lin, J.Y., Lin, M.Z., Steinbach, P., Tsien, R.Y.: Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys. J. 96(5), 1803–1814 (2009)

    Article  Google Scholar 

  51. Ma, A., Poon, A.S.: Midfield wireless power transfer for bioelectronics. IEEE Circuits Syst. Mag. 15(2), 54–60 (2015)

    Google Scholar 

  52. Maegaki, Y., Najm, I., Terada, K., Morris, H.H., Bingaman, W.E., Kohaya, N., Takenobu, A., Kadonaga, Y., Lüders, H.O.: Somatosensory evoked high-frequency oscillations recorded directly from the human cerebral cortex. Clin. Neurophysiol. 111(11), 1916–1926 (2000)

    Article  Google Scholar 

  53. Mattis, J., Tye, K.M., Ferenczi, E.A., Ramakrishnan, C., O’Shea, D.J., Prakash, R., Gunaydin, L.A., Hyun, M., Fenno, L.E., Gradinaru, V.: Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat. Methods 9(2), 159–172 (2012)

    Article  Google Scholar 

  54. McCall, J.G., Kim, T-I., Shin, G., Huang, X., Jung, Y.H., Al-Hasani, R., Omenetto, F.G., Bruchas, M.R., Rogers, J.A.: Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat. Protoc. 8(12), 2413–2428 (2013)

    Article  Google Scholar 

  55. McGill, K.C., Cummins, K.L., Dorfman, L.J., Berlizot, B.B., Luetkemeyer, K., Nishimura, D.G., Widrow, B.: On the nature and elimination of stimulus artifact in nerve signals evoked and recorded using surface electrodes. IEEE Trans. Biomed. Eng. 2, 129–137 (1982)

    Article  Google Scholar 

  56. Meng, C., Gall, O.Z., Irazoqui, P.P.: A flexible super-capacitive solid-state power supply for miniature implantable medical devices. Biomed. Microdevices 15(6), 973–983 (2013)

    Article  Google Scholar 

  57. Montgomery, K.L., Yeh, A.J., Ho, J.S., Tsao, V., Iyer, S.M., Grosenick, L., Ferenczi, E.A., Tanabe, Y., Deisseroth, K., Delp, S.L.: Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods (2015)

    Google Scholar 

  58. Nagel, G., Brauner, M., Liewald, J.F., Adeishvili, N., Bamberg, E., Gottschalk, A.: Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15(24), 2279–2284 (2005). doi:10.1016/j.cub.2005.11.032

    Article  Google Scholar 

  59. Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., Bamberg, E.: Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. 100(24), 13940–13945 (2003)

    Article  Google Scholar 

  60. NatureMethods: Method of the Year 2010. Nat Meth, vol 8. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved (2011). doi:10.1038/nmeth.f.321

  61. Nihongaki, Y., Kawano, F., Nakajima, T., Sato, M.: Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat. Biotechnol. 33(7), 755–760 (2015)

    Article  Google Scholar 

  62. Ozden, I., Wang, J., Lu, Y., May, T., Lee, J., Goo, W., O’Shea, D.J., Kalanithi, P., Diester, I., Diagne, M.: A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates. J. Neurosci. Methods 219(1), 142–154 (2013)

    Article  Google Scholar 

  63. Petreanu, L., Huber, D., Sobczyk, A., Svoboda, K.: Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10(5), 663–668 (2007). doi:10.1038/nn1891

    Article  Google Scholar 

  64. Pisanello, F., Sileo, L., Oldenburg, I.A., Pisanello, M., Martiradonna, L., Assad, J.A., Sabatini, B.L., De Vittorio, M.: Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics. Neuron 82(6), 1245–1254 (2014)

    Article  Google Scholar 

  65. Pisanello, M., Della Patria, A., Sileo, L., Sabatini, B.L., De Vittorio, M., Pisanello, F.: Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity. Biomed. Opt. Express 6(10), 4014–4026 (2015)

    Article  Google Scholar 

  66. Roska, B., Agboh, D.: Restoring Vision to the Blind: Optogenetics (2014)

    Google Scholar 

  67. Rossi, M.A., Go, V., Murphy, T., Fu, Q., Morizio, J., Yin, H.H.: A wirelessly controlled implantable LED system for deep brain optogenetic stimulation. Front. Integr. Neurosci. 9 (2015)

    Google Scholar 

  68. Royer, S., Zemelman, B.V., Barbic, M., Losonczy, A., Buzsáki, G., Magee, J.C.: Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur. J. Neurosci. 31(12), 2279–2291 (2010)

    Article  Google Scholar 

  69. Rubehn, B., Wolff, S.B., Tovote, P., Lüthi, A., Stieglitz, T.: A polymer-based neural microimplant for optogenetic applications: design and first in vivo study. Lab Chip 13(4), 579–588 (2013)

    Article  Google Scholar 

  70. Schroll, C., Riemensperger, T., Bucher, D., Ehmer, J., Voller, T., Erbguth, K., Gerber, B., Hendel, T., Nagel, G., Buchner, E., Fiala, A.: Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16(17), 1741–1747 (2006). doi:10.1016/j.cub.2006.07.023

    Article  Google Scholar 

  71. Seeger-Armbruster, S., Bosch-Bouju, C., Little, S.T., Smither, R.A., Hughes, S.M., Hyland, B.I., Parr-Brownlie, L.C.: Patterned, but not tonic, optogenetic stimulation in motor thalamus improves reaching in acute drug-induced parkinsonian rats. J. Neurosci. 35(3), 1211–1216 (2015)

    Article  Google Scholar 

  72. Sileo, L., Pisanello, M., De Vittorio, M., Pisanello, F.: Fabrication of multipoint light emitting optical fibers for optogenetics. In: SPIE BiOS, 2015. International Society for Optics and Photonics, pp. 93052O-93052O-93057

    Google Scholar 

  73. Stensaas, S.S., Stensaas, L.: The reaction of the cerebral cortex to chronically implanted plastic needles. Acta Neuropathol. 35(3), 187–203 (1975)

    Google Scholar 

  74. Swann, N., Poizner, H., Houser, M., Gould, S., Greenhouse, I., Cai, W., Strunk, J., George, J., Aron, A.R.: Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson’s disease. J. Neurosci. 31(15), 5721–5729 (2011)

    Article  Google Scholar 

  75. Tye, K.M., Deisseroth, K.: Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 13(4), 251–266 (2012)

    Article  Google Scholar 

  76. Wang, J., Wagner, F., Borton, D.A., Zhang, J., Ozden, I., Burwell, R.D., Nurmikko, A.V., van Wagenen, R., Diester, I., Deisseroth, K.: Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J. Neural Eng. 9(1), 016001 (2012)

    Article  Google Scholar 

  77. Wentz, C.T., Bernstein, J.G., Monahan, P., Guerra, A., Rodriguez, A., Boyden, E.S.: A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J. Neural Eng. 8(4), 046021 (2011)

    Article  Google Scholar 

  78. Wetzel SJ (1993) Coupling light emitting diodes to multimode optical fibers

    Google Scholar 

  79. Wietek, J., Wiegert, J.S., Adeishvili, N., Schneider, F., Watanabe, H., Tsunoda, S.P., Vogt, A., Elstner, M., Oertner, T.G., Hegemann, P.: Conversion of channelrhodopsin into a light-gated chloride channel. Science 344(6182), 409–412 (2014)

    Article  Google Scholar 

  80. Witten, I.B., Steinberg, E.E., Lee, S.Y., Davidson, T.J., Zalocusky, K.A., Brodsky, M., Yizhar, O., Cho, S.L., Gong, S., Ramakrishnan, C.: Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72(5), 721–733 (2011)

    Article  Google Scholar 

  81. Yaroslavsky, A., Schulze, P., Yaroslavsky, I., Schober, R., Ulrich, F., Schwarzmaier, H.: Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys. Med. Biol. 47(12), 2059 (2002)

    Article  Google Scholar 

  82. Yeh, A.J., Ho, J.S., Tanabe, Y., Neofytou, E., Beygui, R.E., Poon, A.S.: Wirelessly powering miniature implants for optogenetic stimulation. Appl. Phys. Lett. 103(16), 163701 (2013)

    Article  Google Scholar 

  83. Yoo, S.-S., Bystritsky, A., Lee, J.-H., Zhang, Y., Fischer, K., Min, B.-K., McDannold, N.J., Pascual-Leone, A., Jolesz, F.A.: Focused ultrasound modulates region-specific brain activity. Neuroimage 56(3), 1267–1275 (2011)

    Article  Google Scholar 

  84. Zhang, F., Wang, L.-P., Boyden, E.S., Deisseroth, K.: Channelrhodopsin-2 and optical control of excitable cells. Nat. Methods 3(10), 785–792 (2006)

    Article  Google Scholar 

  85. Zhang, F., Wang, L.P., Brauner, M., Liewald, J.F., Kay, K., Watzke, N., Wood, P.G., Bamberg, E., Nagel, G., Gottschalk, A., Deisseroth, K.: Multimodal fast optical interrogation of neural circuitry. Nature 446(7136), 633–639 (2007). doi:10.1038/nature05744

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Kale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kale, R.P., Paek, S., Tye, S.J., Kouzani, A.Z. (2017). Revolutionizing Causal Circuitry Neurostimulation Utilizing the Optogenetic Technique Through Advanced Microsystems Development. In: Bhatti, A., Lee, K., Garmestani, H., Lim, C. (eds) Emerging Trends in Neuro Engineering and Neural Computation. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-3957-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3957-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3955-3

  • Online ISBN: 978-981-10-3957-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics