Skip to main content

Selective Metal Ion Homeostasis in Cyanobacteria

  • Chapter
  • First Online:
Book cover Prospects and Challenges in Algal Biotechnology

Abstract

Metal homeostasis systems are responsible for the uptake and efflux of both essential and non-essential metals. The capacity of these systems to acquire a particular metal, whilst excluding another is essential for the survival of not just cyanobacteria, but all organisms. The initial step in the acquisition of metal ions from the environment is the physiological binding, or adsorption, of metals to cells. The second step, often energy expensive, is the internalisation of metals, which is facilitated by uptake systems. Metal release from cells requires an efflux system. Both uptake and efflux systems may be controlled by their own regulatory elements. The effectiveness of these transport systems is dependent upon their ability to discriminate effectively between metals. This discrimination is achieved largely by the proteins involved comprising of different metal coordinating ligands strategically positioned in the tertiary structures. For cyanobacteria, arguably the most adept organisms at survival on earth, the information on metal coordination and binding is still limited. However, studies identifying and providing functional characterisation of metal transporters and metalloproteins in cyanobacteria are contributing new insights into metal homeostasis across all living organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammendola S, Pasquali P, Pistoia C, Petrucci P, Petrarca P, Rotilio G, Battistoni A (2007) High-affinity Zn2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. Infect Immun 75:5867–5876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anton A, Weltrowski A, Haney CJ, Franke S, Grass G, Rensing C, Neis DH (2004) Characteristics of zinc transport by two bacterial cation diffusion facilitators from Ralstonia metallidurans CH34 and Escherichia coli. J Bacteriol 186:7499–7507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babich H, Stotzky G (1978) Toxicity of zinc to fungi, bacteria, and coliphages: influence of chloride ions. Appl Environ Microbiol 36:906–914

    Google Scholar 

  • Banerjee S, Wei B, Bhattacharyya-Pakrasi M, Pakrasi HB, Smith TJ (2003) Structural determinants of metal specificity in the zinc transport protein ZnuA from Synechocystis 6803. J Mol Biol 333:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Baptista MS, Vasconcelos MT (2006) Cyanobacteria metal interactions: requirements, toxicity, and ecological implications. Crit Rev Microbiol 32:127–137

    Article  CAS  PubMed  Google Scholar 

  • Barnett JP, Millard A, Ksibe AZ, Scanlan DJ, Schmid R, Blindauer CA (2012) Mining genomes of marine cyanobacteria for elements of zinc homeostasis. Front Microbiol 3:1–21

    Article  Google Scholar 

  • Barnett JP, Scanlan DJ, Blindauer CA (2014) Identification of major zinc-binding proteins from a marine cyanobacterium: insight into metal uptake in oligotrophic environments. Metallomics 6:1254–1268

    Article  CAS  PubMed  Google Scholar 

  • Blencowe DK, Morby AP (2003) Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev 27:291–311

    Article  CAS  PubMed  Google Scholar 

  • Blindauer CA (2008) Zinc-handling in cyanobacteria: an update. Chem Biodivers 5:1990–2013

    Article  CAS  PubMed  Google Scholar 

  • Brown DH, Beckett RP (1983) Differential sensitivity of lichens to heavy metals. Ann Bot 52:51–57

    Google Scholar 

  • Cerasi M, Ammendola S, Battistoni A (2013) Competition for zinc binding in the host-pathogen interaction. Front Cell Infect Microbiol 3:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandra BR, Yogavel M, Sharma A (2007) Structural analysis of ABC-family periplasmic zinc binding protein provides new insights into mechanism of ligand uptake and release. J Mol Biol 367:970–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desrosiers DC, Sun YC, Zaidi AA, Eggers CH, Cox DL, Radolf JD (2007) The general transition metal (Tro) and Zn2+ (Znu) transporters in Treponema pallidum: analysis of metal specificities and expression profiles. Mol Microbiol 65:137–152

    Article  CAS  PubMed  Google Scholar 

  • Dickson JS, Koohmaraie M (1989) Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces. Appl Environ Microbiol 55:832–836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dintilhac A, Alloing G, Granadel C, Claverys JP (1997) Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol 25:727–739

    Article  CAS  PubMed  Google Scholar 

  • Dupont CL, Butcher A, Valas RE, Bourne PE, Caetano-Anolles G (2010) History of biological metal utilization inferred through phylogenomic analysis of protein structures. Proc Natl Acad Sci USA 107:10567–10572

    Google Scholar 

  • Eide DJ (2004) The SLC39 family of metal ion transporters. Pflugers Arch 447:796–800

    Article  CAS  PubMed  Google Scholar 

  • Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763:711–722

    Article  CAS  PubMed  Google Scholar 

  • Fath MJ, Kolter R (1993) ABC transporters: bacterial exporters. Micro Rev 57:995–1017

    CAS  Google Scholar 

  • Hou Z, Mitra B (2003) The metal specificity and selectivity of ZntA from Escherichia coli using the acylphosphate intermediate. J Biol Chem 278:28455–28461

    Article  CAS  PubMed  Google Scholar 

  • Howarth RW, Marino R, Cole JJ (1988) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical controls. Limnol Oceanogr 33:688–701

    CAS  Google Scholar 

  • Hudek L, Brau L, Michalczyk AA, Neilan BA, Meeks JC, Ackland ML (2015a) The ZntA-like NpunR4017 plays a key role in maintaining homeostatic levels of zinc in Nostoc punctiforme. Appl Microbiol Biotechnol 99:10559–10574

    Article  CAS  PubMed  Google Scholar 

  • Hudek L, Pearson L, Michalczyk AA, Brau L, Neilan BA, Ackland ML (2015b) Characterization of two cation diffusion facilitators NpunF0707 and NpunF1794 in Nostoc punctiforme. J Appl Microbiol 119:1357–1370

    Article  CAS  PubMed  Google Scholar 

  • Hudek L, Pearson LA, Michalczyk A, Neilan BA, Ackland ML (2013a) Functional characterization of the twin ZIP/SLC39 metal transporters, NpunF3111 and NpunF2202 in Nostoc punctiforme. Appl Microbiol Biotechnol 97:8649–8662

    Article  CAS  PubMed  Google Scholar 

  • Hudek L, Pearson LA, Michalczyk A, Neilan BA, Ackland ML (2013b) Molecular and cellular characterisation of the zinc uptake (Znu) system of Nostoc punctiforme. FEMS Microbiol Ecol 86:149–171

    Article  CAS  PubMed  Google Scholar 

  • Hudek L, Rai LC, Freestone DF, Michalczyk A, Gibson M, Song YF, Ackland ML (2009) Bioinformatic and expression analyses of genes mediating zinc homeostasis in Nostoc punctiforme. Appl Environ Microbiol 75:784–791

    Article  CAS  PubMed  Google Scholar 

  • Hudek L, Rai S, Michalczyk A, Rai LC, Neilan BA, Ackland ML (2012) Physiological metal uptake by Nostoc punctiforme. Biometals 25:893–903

    Article  CAS  PubMed  Google Scholar 

  • Huertas MJ, Lopez-Maury L, Giner-Lamia J, Sanchez-Riego AM, Florencio FJ (2014) Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life (Basel) 4:865–886

    CAS  Google Scholar 

  • Ibers JA, Holm RH (1980) Modeling coordination sites in metallobiomolecules. Science 209:223–235

    Article  CAS  PubMed  Google Scholar 

  • Halili J, Bislimi K, Mazreku I, Behluli A, Osmani F, Maloku A, Halili F (2013) Translocation of some heavy metals from soil in fruit–wines of the grape vine vineyards of Rahovec. SGEM Conference Proceedings 1:531–538

    Google Scholar 

  • Jeong J, Eide DJ (2013) The SLC39 family of zinc transporters. Mol Aspects Med 34:612–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalfaoui-Hassani B, Verissimo AF, Koch HG and Daldal F (2016) Uncovering the Transmembrane metal binding site of the novel bacterial major facilitator superfamily-type copper importer CcoA. MBio 7

    Google Scholar 

  • Kranzler C, Lis H, Finkel OM, Schmetterer G, Shaked Y, Keren N (2014) Coordinated transporter activity shapes high-affinity iron acquisition in cyanobacteria. ISME J 8:409–417

    Article  CAS  PubMed  Google Scholar 

  • Lindsay JA, Foster SJ (2001) zur: a Zn(2+)-responsive regulatory element of Staphylococcus aureus. Microbiology 147:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Linton KJ, Higgins CF (2007) Structure and function of ABC transporters: the ATP switch provides flexible control. Eur J Physiol 453:555–567

    Article  CAS  Google Scholar 

  • Liu T, Nakashima S, Hirose K, Shibasaka M, Katsuhara M, Ezaki B, Giedroc DP, Kasamo K (2004) A novel cyanobacterial SmtB/ArsR family repressor regulates the expression of a CPx-ATPase and a metallothionein in response to both Cu(I)/Ag(I) and Zn(II)/Cd(II). J Biol Chem 279:17810–17818

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Jacobsen FE, Giedroc DP (2009) Coordination chemistry of bacterial metal transport and sensing. Chem Rev 109:4644–4681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R (2001) An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 70:85–106

    Article  CAS  PubMed  Google Scholar 

  • Napolitano M, Rubio MA, Santamaria-Gomez J, Olmedo-Verd E, Robinson NJ, Luque I (2012) Characterization of the response to zinc deficiency in the cyanobacterium Anabaena sp. Strain PCC 7120. J Bacteriol 194:2426–2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Neis DH (2007) How cells control zinc homeostasis. Science 317:1695–1696

    Article  Google Scholar 

  • Nemirovskiy OV, Gross ML (1998) Gas phase studies of the interactions of Fe2+ with cysteine-containing peptides. J Am Soc Mass Spectrom 9:1285–1292

    Article  CAS  PubMed  Google Scholar 

  • Nessa F, Jewel MAH (2014) Analysis of soil nutrient and heavy metal concentration in agricultural land of Zirani industrial area, Savar, Dhaka. Int J Innov Sci Res 10:90–98

    Google Scholar 

  • Nies DH (1992) CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus. J Bacteriol 174:8102–8110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nies DH (2012) Zinc starvation response in a cyanobacterium revealed. J Bacteriol 194:2407–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson M, Rasmussen U, Bergman B (2006) Cyanobacterial chemotaxis to extracts of host and nonhost plants. FEMS Microbiol Ecol 55:382–390

    Google Scholar 

  • Olajire AA, Ayodele ET, Oyedirdan GO, Oluyemi EA (2003) Levels and speciation of heavy metals in soils of industrial Southern Nigeria. Environ Monit Assess 85:135–155

    Article  CAS  PubMed  Google Scholar 

  • Outten CE, O’Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492

    Article  CAS  PubMed  Google Scholar 

  • Outten CE, Tobin DA, Penner-Hahn JE, O’Halloran TV (2001) Characterization of the metal receptor sites in Escherichia coli Zur, an ultrasensitive zinc(II) metalloregulatory protein. Biochemistry 40:10417–10423

    Article  CAS  PubMed  Google Scholar 

  • Owen GA, Pascoe B, Kallifidas D, Paget MS (2007) Zinc-responsive regulation of alternative ribosomal protein genes in Streptomyces coelicolor involves zur and sigmaR. J Bacteriol 189:4078–4086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmiter RD, Huang L (2004) Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Eur J Physiol 447:744–751

    Article  CAS  Google Scholar 

  • Papageorgiou AC, Acharya KR, Shapiro R, Passalacqua EF, Brehm R, Tranter HS (1995) Crystal structure of the superantigen enterotoxin C2 from Staphylococcus aureus reveals a zinc-binding site. Structure 3:769–799

    Article  CAS  PubMed  Google Scholar 

  • Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pastore C, Franzese M, Sica F, Temussi P, Pastore A (2007) Understanding the binding properties of an unusual metal-binding protein–a study of bacterial frataxin. FEBS J 274:4199–4210

    Article  CAS  PubMed  Google Scholar 

  • Patzer SI, Hantke K (1998) The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28:1199–1210

    Article  CAS  PubMed  Google Scholar 

  • Patzer SI, Hantke K (2000) The zinc-responsive regulator Zur and its control of the Znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. J Biol Chem 275:24321–24332

    Article  CAS  PubMed  Google Scholar 

  • Phung LT, Ajlani G, Haselkorn R (1994) P-type ATPase from the cyanobacterium Synechococcus 7942 related to the human Menkes and Wilson disease gene products. Proc Natl Acad Sci USA 91:9651–9654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platero R, Peixoto L, O’Bian MR, Fabiano E (2004) Fur is involved in manganese-dependant regulation of mantA (sitA) expression in Sinorhizobium meliloti. Appl Environ Microbiol 70:4349–4355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharon S, Salomon E, Kranzler C, Lis H, Lehmann R, Georg J, Zer H, Hess WR, Keren N (2014) The hierarchy of transition metal homeostasis: iron controls manganese accumulation in a unicellular cyanobacterium. Biochim Biophys Acta 1837:1990–1997

    Article  CAS  PubMed  Google Scholar 

  • Shcolnick S, Keren N (2006) Metal homeostasis in cyanobacteria and chloroplasts. Balancing benefits and risks to the photosynthetic apparatus. Plant Physiol 141:805–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin JH, Oh SY, Kim SJ, Roe JH (2007) The zinc-responsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolor A3(2). J Bacteriol 189:4070–4077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shouldice SR, McRee DE, Dougan DR, Tari LW, Schryvers AB (2005) Novel anion-independent iron coordination by members of a third class of bacterial periplasmic ferric ion-binding proteins. J Biol Chem 280:5820–5827

    Article  CAS  PubMed  Google Scholar 

  • Shouldice SR, Skene RJ, Dougan DR, Snell G, McRee DE, Schryvers AB, Tari LW (2004) Structural basis for iron binding and release by a novel class of periplasmic iron-binding proteins found in gram-negative pathogens. J Bacteriol 186:3903–3910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taudte N, Grass G (2010) Point mutations change specificity and kinetics of metal uptake by ZupT from Escherichia coli. Biometals 23:643–656

    Article  CAS  PubMed  Google Scholar 

  • Tripathi BN, Mehta SK, Gaur JP (2003) Differential sensitivity of Anabaena doliolum to Cu and Zn in batch and semicontiuous cultures. Ecotox. Environ. Safe. 56:311–318

    Article  CAS  Google Scholar 

  • Villarreal AJ, Renzaglia KS (2006) Structure and development of Nostoc strands in Leiosporoceros dussii (Anthocerotophyta): a novel symbiosis in land plants. Am J Bot 93:693–705

    Article  Google Scholar 

  • Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 7:25–35

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang H, ZXu M, Cai Y, Liu C, Su Z and Zhang C (2009) Biological characterisation of the zinc binding site coordinating hisitidne residues of staphylococcal enterotoxin C2. Microbiology 155:680–686

    Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011:20

    Article  Google Scholar 

  • Yamamoto K, Ishihama A (2005) Transcriptional response of Escherichia coli to external zinc. J Bacteriol 187:6333–6340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita MM, Wesson L, Eisenman G, Eisenberg D (1990) Where metal ions bind in proteins. Proc Natl Acad Sci USA 87:5648–5652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zak E, Norling B, Maitra R, Huang F, Andersson B, Pakrasi HB (2001) The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc Natl Acad Sci USA 98:13443–13448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Leigh Ackland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hudek, L., Ackland, M.L. (2017). Selective Metal Ion Homeostasis in Cyanobacteria. In: Tripathi, B., Kumar, D. (eds) Prospects and Challenges in Algal Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1950-0_7

Download citation

Publish with us

Policies and ethics