Skip to main content

Impact of Pollution on Phytoplankton and Implications for Marine Econiches

  • Chapter
  • First Online:

Abstract

Pollution in marine environments has been widely studied because of its impact, both direct and indirect, on human livelihood. Pollution may arise from different sources, the most well known being influx of domestic sewage, industrial waste and mining effluents. Shipping activities also contribute to pollution, either through accidental oil spills, ballasting and deballasting activities or bioinvasion. Pollution due to microplastics, radiation and heat (thermal pollution) is also gaining prominence. The impact of these varying sources of pollution on marine econiches is wide ranging; different trophic levels are affected. A pivotal trophic level impacted by pollution in the marine environment is phytoplankton, known for their role as microscopic primary producers and base of aquatic food webs. Pollution affects phytoplankton communities at different levels – abundance, growth strategies, dominance and succession patterns. Even if no direct changes in phytoplankton communities are visible, pollutants may accumulate in phytoplankton and be passed on to other trophic levels in a cascading manner, resulting in biomagnification of certain pollutants. This article focusses on the effects of different types of pollution (both point sources and non-point sources) on phytoplankton communities. The anthropocentric concept of ‘pollution’ and the links between pollution, eutrophication and harmful algal blooms (HABs) are also analyzed. An understanding of the synergistic interactions between these aspects and climate change effects will be useful to devise suitable remediation strategies for future use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amin SA, Parker MS, Armbrust EV (2012) Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76(3):667–684

    Article  CAS  Google Scholar 

  • Anil AC, Venkat K, Sawant SS et al (2002) Marine bioinvasion: concern for ecology and shipping. Curr Sci 83(3):214–218

    Google Scholar 

  • Assmy P, Henjes J, Klaas C, Smetacek V (2007) Mechanisms determining species dominance in a phytoplankton bloom induced by the iron fertilization experiment EisenEx in the Southern Ocean. Deep Sea Res I 54:340–362

    Article  Google Scholar 

  • Backer L, McGillicuddy D (2006) Harmful algal blooms. Oceanography 19(2):94–106

    Article  Google Scholar 

  • Baragi LV, Anil AC (2015) Interactive effect of elevated pCO2 and temperature on the larval development of an inter-tidal organism, Balanus amphitrite Darwin (Cirripedia: Thoracica). J Exp Mar Biol Ecol 471:48–57

    Article  CAS  Google Scholar 

  • Baragi LV, Khandeparker L, Anil AC (2015) Influence of elevated temperature and pCO2 on the marine periphytic diatom Navicula distans and its associated organisms in culture. Hydrobiologia 762:127–142

    Article  CAS  Google Scholar 

  • Boelen P, Van de Poll WH, Van der Strate HJ et al (2011) Neither elevated nor reduced CO2 affects the photophysiological performance of the marine Antarctic diatom Chaetoceros brevis. J Exp Mar Biol Ecol 406:38–45

    Article  Google Scholar 

  • Boyd PW, Doney SC (2003) The impact of climate change and feedback processes on the ocean carbon cycle. In: Ocean biogeochemistry. Springer, Berlin, pp 157–193

    Google Scholar 

  • Brain RA, Johnson DJ, Richards SM et al (2004) Effects of 25 pharmaceutical compounds to Lemna gibba using a seven‐day static‐renewal test. Environ Toxicol Chem 23:371–382

    Article  CAS  Google Scholar 

  • Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425(6956):365

    Article  CAS  Google Scholar 

  • Campa-Cordova AI, Luna-Gonzalez A, Ascencio F et al (2006) Effects of chloramphenicol, erythromycin, and furazolidone on growth of Isochrysis galbana and Chaetoceros gracilis. Aquaculture 260(1):145–150

    Article  CAS  Google Scholar 

  • Cheke RA (2007) Thinking long term. Science 318(5850):577

    Article  CAS  Google Scholar 

  • Chuang YL, Yang HH, Lin HJ (2009) Effects of a thermal discharge from a nuclear power plant on phytoplankton and periphyton in subtropical coastal waters. J Sea Res 61(4):197–205

    Article  CAS  Google Scholar 

  • Colwell RK (2009) Biodiversity: concepts, patterns and measurement. In: Levin SA (ed) The Princeton guide to ecology. Princeton University Press, Princeton, pp 257–263

    Google Scholar 

  • D’Costa PM (2010) Studies on phytoplankton-bacterial interactions. Ph.D. thesis. Goa University

    Google Scholar 

  • D’Costa PM, Anil AC (2010) Diatom community dynamics in a tropical, monsoon-influenced environment: west coast of India. Cont Shelf Res 30(12):1324–1337

    Article  Google Scholar 

  • D’Costa PM, Anil AC (2012) The effect of antibiotics on diatom communities. Curr Sci 102:1552–1559

    Google Scholar 

  • D’Costa PM, Anil AC, Patil JS et al (2008) Dinoflagellates in a mesotrophic, tropical environment influenced by monsoon. Estuar Coast Shelf Sci 77(1):77–90

    Article  Google Scholar 

  • D’Silva MS, Anil AC, Borole DV et al (2012a) Tracking the history of dinoflagellate cyst assemblages in sediments from the west coast of India. J Sea Res 73:86–100

    Article  Google Scholar 

  • D’Silva MS, Anil AC, Naik RK et al (2012b) Algal blooms: a perspective from the coasts of India. Nat Hazards 63(2):1225–1253

    Article  Google Scholar 

  • D’Silva MS, Anil AC, Sawant SS (2013) Dinoflagellate cyst assemblages in recent sediments of Visakhapatnam harbour, east coast of India: influence of environmental characteristics. Mar Pollut Bull 66(1):59–72

    Article  CAS  Google Scholar 

  • Dale B, Edwards M, Reid PC (2006) Climate change and harmful algal blooms. In: Ecology of harmful algae. Springer, Berlin, pp 367–378

    Chapter  Google Scholar 

  • Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci U S A 106(31):12788–12793

    Article  CAS  Google Scholar 

  • Davies AG (1978) Pollution studies with marine plankton. II. Heavy metals. Adv Mar Biol 15:381–508

    Article  CAS  Google Scholar 

  • Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol 27(1):2–8

    Article  Google Scholar 

  • de Stephanis R, Giménez J, Carpinelli E et al (2013) As main meal for sperm whales: plastics debris. Mar Pollut Bull 69(1):206–214

    Article  CAS  Google Scholar 

  • DeLorenzo ME, Scott GI, Ross PE (2001) Toxicity of pesticides to aquatic microorganisms: a review. Environ Toxicol Chem 20(1):84–98

    Article  CAS  Google Scholar 

  • DeLorenzo ME, Taylor LA, Lund SA et al (2002) Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in phytoplankton and zooplankton. Arch Environ Contam Toxicol 42(2):173–181

    Article  CAS  Google Scholar 

  • Devinney JS (1980) Effects of thermal effluents on communities of benthic marine macroalgae. Environ Manage 11:225–242

    Google Scholar 

  • Dolah FM, Roelke D, Greene RM (2001) Health and ecological impacts of harmful algal blooms: risk assessment needs. Hum Ecol Risk Assess 7(5):1329–1345

    Article  Google Scholar 

  • Duursma EK, Marchand M (1974) Aspects of organic marine pollution. Oceanogr Mar Biol 12:315–431

    CAS  Google Scholar 

  • Echeveste P, Dachs J, Berrojalbiz N et al (2010) Decrease in the abundance and viability of oceanic phytoplankton due to trace levels of complex mixtures of organic pollutants. Chemosphere 81(2):161–168

    Article  CAS  Google Scholar 

  • Eguchi K, Nagase H, Ozawa M et al (2004) Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57:1733–1738

    Article  CAS  Google Scholar 

  • Eppley RW, Renger EH, Williams PM (1976) Chlorine reactions with seawater constituents and the inhibition of photosynthesis of natural marine phytoplankton. Estuar Coast Mar Sci 4(2):147–161

    Article  CAS  Google Scholar 

  • Eriksen M, Lebreton LC, Carson HS et al (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 9(12):e111913

    Article  CAS  Google Scholar 

  • Fabry VJ, McClintock JB, Mathis JT et al (2009) Ocean acidification at high latitudes: the bellwether. Oceanography 22(4):160–171

    Article  Google Scholar 

  • Fistarol GO, Legrand C, Graneli E (2005) Allelopathic effect on a nutrient-limited phytoplankton species. Aquat Microb Ecol 41:153–161

    Article  Google Scholar 

  • Fu FX, Tatters AO, Hutchins DA (2012) Global change and the future of harmful algal blooms in the ocean. Mar Ecol Prog Ser 470:207–233

    Article  CAS  Google Scholar 

  • Gaidhani SV, Raskar AV, Poddar S et al (2014) Time dependent enhanced resistance against antibiotics and metal salts by planktonic and biofilm form of Acinetobacter haemolyticus MMC 8 clinical isolate. Indian J Med Res 140(5):665

    CAS  Google Scholar 

  • Gaonkar CA, Krishnamurthy V, Anil AC (2010) Changes in the abundance and composition of zooplankton from the ports of Mumbai, India. Environ Monit Assess 168(1–4):179–194

    Article  Google Scholar 

  • GESAMP (IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution) (1991) Reducing environmental impacts of coastal aquaculture. Rep Stud GESAMP 47:35

    Google Scholar 

  • Glibert PM, Anderson DM, Gentien P et al (2005) The global, complex phenomena of harmful algal blooms. Oceanography 18(2):136–147

    Article  Google Scholar 

  • Glibert PM, Harrison JO, Heil CY et al (2006) Escalating worldwide use of urea – a global change contributing to coastal eutrophication. Biogeochemistry 77:441–463

    Article  CAS  Google Scholar 

  • Granéli E, Johansson N (2003) Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N-or P-deficient conditions. Harmful Algae 2(2):135–145

    Article  CAS  Google Scholar 

  • Gregory MR (1999) Plastics and South Pacific Island shores: environmental implications. Ocean Coast Manag 42(6):603–615

    Article  Google Scholar 

  • Hagenbuch IM, Pinckney JL (2012) Toxic effect of the combined antibiotics ciprofloxacin, lincomycin, and tylosin on two species of marine diatoms. Water Res 46:5028–5036

    Article  CAS  Google Scholar 

  • Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase*. Phys Chem Chem Phys 32(2):79–99

    Google Scholar 

  • Hallegraeff GM (2010) Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge1. J Phycol 46(2):220–235

    Article  CAS  Google Scholar 

  • Halling-Sørensen B (2000) Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 40:731–739

    Article  Google Scholar 

  • Halling-Sørensen B, Nielsen SN, Lanzky PF et al (1998) Occurrence, fate and effects of pharmaceutical substances in the environment – a review. Chemosphere 36(2):357–393

    Article  Google Scholar 

  • Harley CD, Randall Hughes A, Hultgren KM et al (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9(2):228–241

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic, London

    Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR et al (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296(5576):2158–2162

    Article  CAS  Google Scholar 

  • Hernandez M, Robinson I, Aguilar A et al (1998) Did algal toxins cause monk seal mortality? Nature 393(6680):28–29

    Article  CAS  Google Scholar 

  • HMSO (1990) Fourth report: pollution of beaches, vol 1. House of Commons Environment Committee, Her Majesty’s Stationary Office, London

    Google Scholar 

  • Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol Oceanogr 51:364–376

    Article  CAS  Google Scholar 

  • Hutchins DA, Mulholland MR, Fu FX (2009) Nutrient cycles and marine microbes in a CO2-enriched ocean. Oceanography 22:128–145

    Article  Google Scholar 

  • Islam MS, Tanaka M (2004) Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar Pollut Bull 48(7):624–649

    Article  CAS  Google Scholar 

  • James WG (1967) Mussel fouling and use of exomotive chlorination. Chem Ind 24:994

    Google Scholar 

  • James KJ, Carey B, O’Halloran J et al (2010) Shellfish toxicity: human health implications of marine algal toxins. Epidemiol Infect 138(07):927–940

    Article  CAS  Google Scholar 

  • Jeffrey SW, Vesk M (1997) Introduction to marine phytoplankton and their pigment signatures. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods, Monographs on oceanographic methodology 10. UNESCO Publishing, Paris, pp 37–84

    Google Scholar 

  • Johnson VR, Brownlee C, Rickaby RE et al (2013) Responses of marine benthic microalgae to elevated CO2. Mar Biol 160(8):1813–1824

    Article  CAS  Google Scholar 

  • Joly C (1993) Plant nutrient management and the environment. Water Reports (FAO)

    Google Scholar 

  • Jost C, Lawrence CA, Campolongo F et al (2004) The effects of mixotrophy on the stability and dynamics of a simple planktonic food web model. Theor Popul Biol 66(1):37–51

    Article  Google Scholar 

  • Joyce LB, Pitcher GC, Du Randt A et al (2005) Dinoflagellate cysts from surface sediments of Saldanha Bay, South Africa: an indication of the potential risk of harmful algal blooms. Harmful Algae 4(2):309–318

    Article  Google Scholar 

  • Kayser H (1976) Waste-water assay with continuous algal cultures: the effect of mercuric acetate on the growth of some marine dinoflagellates. Mar Biol 36(1):61–72

    Article  CAS  Google Scholar 

  • Kilham P, Kilham SS (1980) The evolutionary ecology of phytoplankton. In: Morris I (ed) The physiological ecology of phytoplankton. Blackwell, Oxford, pp 571–597

    Google Scholar 

  • Kimor B (1992) The impact of eutrophication on phytoplankton composition in coastal marine ecosystems. Sci Total Environ 1099:871–878

    Google Scholar 

  • Lai HT, Hou JH, Su CI et al (2009) Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella pyrenoidosa, Isochrysis galbana, and Tetraselmis chui. Ecotoxicol Environ Safe 72(2):329–334

    Article  CAS  Google Scholar 

  • Langford T (1990) Ecological effects of thermal discharges. Springer Science and Business Media, Heidelberg, Germany

    Google Scholar 

  • Laubie L (2001) Climatic changes and trends in marine invertebrates: a need for relevant observing networks and experimental ecophysiology. Atti Associazione Ital Oceanologia Limnol 14:15–24

    Google Scholar 

  • Long M, Moriceau B, Gallinari M et al (2015) Interactions between microplastics and phytoplankton aggregates: impact on their respective fates. Mar Chem 175:39–46

    Article  CAS  Google Scholar 

  • Lovelock J, Margulis L (1996) The Gaia Hypothesis. In: Scharper SB (ed) Redeeming the time: a political theology of the environment. A and C Black Publishers, London, UK

    Google Scholar 

  • Maclean JL (1989) Indo-Pacific red tides, 1985–1988. Mar Pollut Bull 20(7):304–310

    Article  Google Scholar 

  • Main CR, Salvitti LR, Whereat EB et al (2015) Community-level and species-specific associations between phytoplankton and particle-associated Vibrio species in Delaware’s inland bays. Appl Environ Microbiol 81(17):5703–5713

    Article  CAS  Google Scholar 

  • Mantua NJ, Hare SR (2002) The pacific decadal oscillation. J Oceanogr 58:35–44

    Article  Google Scholar 

  • Margalef R (1978) Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1:493–509

    Google Scholar 

  • Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157:2893–2902

    Article  CAS  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD et al (2007) Global climate projections. Clim Chang 3495:747–845

    Google Scholar 

  • Moore SK, Mantua NJ, Hickey BM, Trainer VL (2009) Recent trends in paralytic shellfish toxins in Puget sound, relationships to climate, and capacity for prediction of toxic events. Harmful Algae 8:463–477

    Article  CAS  Google Scholar 

  • Naik RK, Hegde S, Anil AC (2011) Dinoflagellate community structure from the stratified environment of the Bay of Bengal, with special emphasis on harmful algal bloom species. Environ Monit Assess 182(1–4):15–30

    Article  Google Scholar 

  • Nixon SW (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–219

    Article  Google Scholar 

  • Obbard RW, Sadri S, Wong YQ et al (2014) Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future 2(6):315–320

    Article  Google Scholar 

  • Occhipinti-Ambrogi A (2007) Global change and marine communities: alien species and climate change. Mar Pollut Bull 55(7):342–352

    Article  CAS  Google Scholar 

  • Oliver RL, Ganf GC (2000) Freshwater blooms. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 149–194

    Google Scholar 

  • Orr JC, Fabry VJ, Aumont O et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059):681–686

    Article  CAS  Google Scholar 

  • Paerl HW, Scott JT (2010) Throwing fuel on the fire: synergistic effects of excessive nitrogen inputs and global warming on harmful algal blooms. Environ Sci Technol 44(20):7756–7758

    Article  CAS  Google Scholar 

  • Pan Y, Rao DS (1997) Impacts of domestic sewage effluent on phytoplankton from Bedford Basin, eastern Canada. Mar Pollut Bull 34(12):1001–1005

    Article  CAS  Google Scholar 

  • Paterson DM (1997) Biological mediation of sediment erodibility: ecology and physical dynamics. In: Burt N, Parker R, Watts J (eds) Cohesive sediments. Wiley, Chichester, pp 215–229

    Google Scholar 

  • Patil (2003) Studies on ecology of diatoms. Ph.D. thesis. Goa University

    Google Scholar 

  • Pinckney JL, Hagenbuch IM, Long RA et al (2013) Sublethal effects of the antibiotic tylosin on estuarine benthic microalgal communities. Mar Pollut Bull 68:8–12

    Article  CAS  Google Scholar 

  • Poornima EH, Rajadurai M, Rao TS et al (2005) Impact of thermal discharge from a tropical coastal power plant on phytoplankton. J Thermal Biol 30(4):307–316

    Article  CAS  Google Scholar 

  • Porzio L, Buia MC, Hall-Spencer JM (2011) Effects of ocean acidification on macroalgal communities. J Exp Mar Biol Ecol 400(1):278–287

    Article  CAS  Google Scholar 

  • Ramaiah N, Ramaiah N, Nair VR (1998) Phytoplankton characteristics in a polluted Bombay harbour-Thana-Bassein creek estuarine complex. Indian J Mar Sci 27:281–285

    CAS  Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110(5):354–384

    Article  Google Scholar 

  • Rasmusson EM, Wallace JM (1983) Meteorological aspects of the El Nino/southern oscillation. Science 222(4629):1195–1202

    Article  CAS  Google Scholar 

  • Raven J, Caldeira K, Elderfield H et al (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society, London

    Google Scholar 

  • Rehnstam-Holm AS, Godhe A, Härnström K et al (2010) Association between phytoplankton and Vibrio spp. along the southwest coast of India: a mesocosm experiment. Aquat Microb Ecol 58(2):127–139

    Article  Google Scholar 

  • Reynolds CS (1980) Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarct Ecol 3:141–159

    Google Scholar 

  • Riebesell U, Zondervan I, Rost B et al (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407(6802):364–367

    Article  CAS  Google Scholar 

  • Riegman R (1995) Nutrient-related selection mechanisms in marine phytoplankton communities and the impact of eutrophication on the planktonic food web. Water Sci Technol 32(4):63–75

    Article  CAS  Google Scholar 

  • Rose FL, McIntire CD (1970) Accumulation of dieldrin by benthic algae in laboratory streams. Hydrobiologia 35(3–4):481–493

    Article  CAS  Google Scholar 

  • Rosenberg R, Nilsson HC (2005) Deterioration of soft-bottom benthos along the Swedish Skagerrak coast. J Sea Res 54(3):231–242

    Article  Google Scholar 

  • Round FE (1965) The epipsammon: a relatively unknown freshwater algal association. Br Phycol Bull 2:456–462

    Article  Google Scholar 

  • Round FE (1979) Occurrence and rhythmic behaviour of Tropidoneis lepidoptera in the epipelon of Barnstable Harbor, Massachusetts, USA. Mar Biol 54:215–217

    Article  Google Scholar 

  • Russel FE, Kotin P (1956) Squamous papilloma in the white croaker. J Nat Cancer Inst 18:857–861

    Google Scholar 

  • Safina C (2013) No refuge: tons of trash covers the remote shores of Alaska. Yale Environment 360

    Google Scholar 

  • Seidl M, Huang V, Mouchel JM (1998) Toxicity of combined sewer overflows on river phytoplankton: the role of heavy metals. Environ Poll 101(1):107–116

    Article  CAS  Google Scholar 

  • Seltenrich N (2015) New link in the food chain? Marine plastic pollution and seafood safety. Environ Health Perspect 123(2):A34

    Article  Google Scholar 

  • Sett S, Bach LT, Schulz KG et al (2014) Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO2. PLoS One 9(2):e88308

    Article  CAS  Google Scholar 

  • Smetacek V, Cloern JE (2008) On phytoplankton trends. Science 319:1346–1348

    Article  CAS  Google Scholar 

  • Stange K, Swackhamer DL (1994) Factors affecting phytoplankton species‐specific differences in accumulation of 40 polychlorinated biphenyls (PCBs). Environ Toxicol Chem 13(11):1849–1860

    Article  CAS  Google Scholar 

  • Stocker T, Qin D, Plattner G et al (2013) IPCC, 2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change

    Google Scholar 

  • Strauss SD, Puckorius PR (1984) Cooling-water treatment for control of scaling, fouling, corrosion. Power 128(6):S1–S24

    CAS  Google Scholar 

  • Taslakian MJ, Hardy JT (1976) Sewage nutrient enrichment and phytoplankton ecology along the central coast of Lebanon. Mar Biol 38(4):315–325

    Article  CAS  Google Scholar 

  • Thingstad TF, Havskum H, Garde K, Riemann B (1996) On the strategy of “eating your competitor”: a mathematical analysis of algal mixotrophy. Ecology 77:2108–2118

    Article  Google Scholar 

  • Thomas TE, Robinson MG (1987) The role of bacteria in the metal tolerance of the fouling diatom Amphora coffeaeformis Ag. J Exp Mar Biol Ecol 107:291–297

    Article  CAS  Google Scholar 

  • Thompson GB, Ho J (1981) Some effects of sewage discharge upon phytoplankton in Hong Kong. Mar Pollut Bull 12(5):168–173

    Article  Google Scholar 

  • Tomas CR (ed) (1997) Identifying marine phytoplankton. Academic, San Diego, pp 1–858

    Book  Google Scholar 

  • Torstensson A, Chierici M, Wulff A (2012) The influence of increased temperature and carbon dioxide levels on the benthic/sea ice diatom Navicula directa. Polar Biol 35:205–214

    Article  Google Scholar 

  • Usup G, Azanza RV (1998) Physiology and bloom dynamics of the tropical dinoflagellate Pyrodinium bahamense. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms, vol G41. Springer, Berlin, pp 81–94

    Google Scholar 

  • Williams C (1996) Combating marine pollution from land-based activities: Australian initiatives. Ocean Coast Manag 33(1–3):87–112

    Article  Google Scholar 

  • Winston JE, Gregory MR, Stevens LM (1997) Encrusters, epibionts, and other biota associated with pelagic plastics: a review of biogeographical, environmental, and conservation issues. In: Marine debris. Springer, New York, pp 81–97

    Google Scholar 

  • Wollenberger L, Halling-Sørensen B, Kusk KO (2000) Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 40:723–730

    Article  CAS  Google Scholar 

  • Yamamoto T, Hatta G (2004) Pulsed nutrient supply as a factor inducing phytoplankton diversity. Ecol Model 171:247–270

    Article  Google Scholar 

  • Yin K, Harrison PJ, Chen J et al (1999) Red tides during spring 1998 in Hong Kong: is El Niño responsible? Mar Ecol Prog Ser 187:289–294

    Article  Google Scholar 

  • Yvon‐Durocher G, Dossena M, Trimmer M, Woodward G, Allen AP (2015) Temperature and the biogeography of algal stoichiometry. Glob Ecol Biogeogr 24(5):562–570

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Harmful Algal Bloom Study Programme 'SHABASHI' funded by NF-POGO. PD acknowledges the Science and Engineering Board, Department of Science and Technology, India, for the SERB-DST Fast Track Project for Young Scientists (DST No: SB/YS/LS-319/2013). RN greatly acknowledges the support provided by the Director, ESSO-NCAOR, MoES, and Dr. Anilkumar (Group Director). This is NCAOR Contribution No. 14/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya Mallika D’Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

D’Costa, P.M., D’Silva, M.S., Naik, R.K. (2017). Impact of Pollution on Phytoplankton and Implications for Marine Econiches. In: Naik, M., Dubey, S. (eds) Marine Pollution and Microbial Remediation. Springer, Singapore. https://doi.org/10.1007/978-981-10-1044-6_13

Download citation

Publish with us

Policies and ethics