Skip to main content

1, 2 and 3 Dimensional Photonic Materials Made Using Ion Beams: Fabrication and Optical Density-of-States

  • Chapter
  • 904 Accesses

Part of the book series: NATO Science Series ((ASIC,volume 563))

Abstract

The spontaneous emission rate of an optical probe atom is strongly dependent on its optical environment. This concept is well known in one-dimensional geometries, e.g. for an atom placed near a mirror, a dielectric interface, or in a microcavity.1,2,3,4,5,6 With the recent development of two- and three-dimensional photonic crystals it becomes possible to tailor optical modes and the local optical density-of-states (DOS) to a much greater extent. Large effects on the spontaneous emission rate of optical probe ions are expected in these materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.M. Purcell, Spontaneous emission probabilities at radio frequencies, Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  2. K.H. Drexhage, Influence of a dielectric interface on fluorescence decay time, J. Lumin. 1,2, 693 (1970).

    Article  Google Scholar 

  3. R.G. Hulet, E.S. Hilfer, and D. Kleppner, Inhibited spontaneous emission by a Rydberg atom, Phys. Rev. Lett. 55, 2137 (1985).

    Article  ADS  Google Scholar 

  4. A.M. Vredenberg, N.E.J. Hunt, E.F. Schubert, D.C. Jacobson, J.M. Poate, and G.J. Zydzik, Controlled spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity, Phys. Rev. Lett. 71, 517 (1993).

    Article  ADS  Google Scholar 

  5. E. Snoeks, A. Lagendijk, and A. Polman, Measuring and modifying the spontaneous emission rate of erbium near an interface, Phys. Rev. Lett. 74, 2459 (1995)

    Article  ADS  Google Scholar 

  6. W.L. Barnes, Topical review: Fluorescence near interfaces: the role of photonic mode density, J. Mod. Opt. 45, 661 (1998).

    Article  ADS  Google Scholar 

  7. A. van Blaaderen, and A. Vrij, Synthesis and characterization of colloidal dispersions of fluorescent monodisperse silica spheres, Langmuir 8, 2921 (1993).

    Article  Google Scholar 

  8. L.H. Slooff, M.J.A. de Dood, A. van Blaaderen, and A. Polman, Erbium-implanted silica colloids with 80% luminescence quantum efficiency, Appl. Phys. Lett. 76, 3682 (2000).

    Article  ADS  Google Scholar 

  9. T.M. Hensen, M.J.A. de Dood, and A. Polman, Luminescence quantum efficiency and local optical density of states in thin film ruby made by ion implantation, (unpublished).

    Google Scholar 

  10. H. Khosravi, and R. Loudon, Vacuum field fluctuation and spontaneous emission in the vicinity of a dielectric surface, Proc. R. Soc. Lond. A 433, 337 (1991).

    Article  ADS  Google Scholar 

  11. H.P. Urbach, and G.L.J.A. Rikken, Spontaneous emission from a dielectric slab, Phys. Rev. A 57, 3913 (1998).

    Article  ADS  Google Scholar 

  12. B.A. van Tiggelen, and E. Kogan, Analogies between light and electrons: Density of states and Friedel’s identity, Phys. Rev. A 75, 422 (1995).

    Google Scholar 

  13. F.J.P. Schuurmans, D.T.N. de Lang, G.H. Wegdam, R. Sprik, and A. Lagendijk, Local-field effects on spontaneous emission in a dense supercritical gas, Phys. Rev. Lett. 80, 5077 (1998).

    Article  ADS  Google Scholar 

  14. R. Sprik, B.A. van Tiggelen, and A. Lagendijk, Optical emission in periodic dielectrics, Europhys. Lett. 35, 265 (1996).

    Article  ADS  Google Scholar 

  15. J.B. Pendry, and A. MacKinnon, Calculation of photon dispersion relations, Phys. Rev. Lett. 69, 2772 (1992).

    Article  ADS  Google Scholar 

  16. J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press (1995).

    Google Scholar 

  17. A. Mekis, J.C. Chen,. I. Kurland, S. Fan, and J.D. Joannopoulos, High transmission through sharp bends in photonic crystal waveguides, Phys. Rev. Lett. 77, 3787 (1996).

    Article  ADS  Google Scholar 

  18. S.Y. Lin, E. Chow, and V. Hietala and P.R. Villeneuve and J.D. Joannopoulos, Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal, Science 282, 274 (1998).

    Article  ADS  Google Scholar 

  19. M.J.A. de Dood, E. Snoeks, A. Moroz, and A. Polman, Design and optimization of 2-D photonic crystal waveguides based on silicon, (unpublished).

    Google Scholar 

  20. S. Roorda, W.C. Sinke, J.M. Poate, D.C. Jacobson, S. Dierker, B.S. Dennis, DJ. Eaglesham, F. Spaepen, and P. Fuoss, Structural relaxation and defect annihilation in pure amorphous silicon, Phys. Rev. B 44, 3702 (1991).

    Article  ADS  Google Scholar 

  21. N.A.M. Verhaegh, and A. van Blaaderen, Dispersions of Rhodamine-labeled silica spheres — synthesis, characterization and fluorescence confocal scanning laser microscopy, Langmuir 10, 1427 (1994).

    Article  Google Scholar 

  22. S. Tachi, K. Tsujimoto, S. Arai and T. Kure, Low-temperature dry etching, J. Vac. Sci. Technol. A 9, 796 (1991).

    Article  ADS  Google Scholar 

  23. J.K. Bhardwaj, and H. Ashraf, Advanced silicon etching using high density plasmas, SPIE 2639, 224 (1995).

    Article  ADS  Google Scholar 

  24. T. Zijlstra, E. van der Drift, M.J.A. de Dood, E. Snoeks, and A. Polman, Fabrication of two-dimensional photonic crystal waveguides at 1.5 μm in silicon by deep anisotropic etching, J. Vac. Sci. Technol. B 17, 2734 (1999).

    Article  Google Scholar 

  25. C.N. Waddell, W.G. Spitzer, J.E. Fredrickson, G.K. Hubler, and T.A. Kennedy, Amorphous silicon produced by ion implantation: Effects of ion mass and thermal annealing, J. Appl. Phys. 55, 4361 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Dood, M.J.A. et al. (2001). 1, 2 and 3 Dimensional Photonic Materials Made Using Ion Beams: Fabrication and Optical Density-of-States. In: Soukoulis, C.M. (eds) Photonic Crystals and Light Localization in the 21st Century. NATO Science Series, vol 563. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0738-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0738-2_40

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6948-6

  • Online ISBN: 978-94-010-0738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics