Skip to main content

Manipulating Colloidal Crystallization for Photonic Applications: From Self-Organization to Do-it-Yourself Organization

  • Chapter
Photonic Crystals and Light Localization in the 21st Century

Abstract

Photonic crystals are regular three-dimensional (3D) structures with which the propagation and spontaneous emission of photons can be manipulated in new ways if the feature sizes are roughly half the wavelength and the coupling with the electromagnetic radiation is sufficiently strong. ‘Early’ speculation on these new possibilities can be found in the Refs.1–4 A more recent overview can be found in Ref.5 and, of course, the other chapters in this book. A useful analogy to guide thinking about the properties and the applications of photonic crystals is the propagation of electrons in a semiconductor in comparison to the propagation of photons scattered by a regular 3D dielectric material. An example is the possibility of opening up a region of energy, a photonic band gap, for which the propagation of photons is forbidden, in analogy to the electronic band gap present in semiconductors. However, there are also important differences; for instance, the scattering of photons cannot be described well by scalar wave equations because the polarization of light cannot be neglected. Most theoretical and experimental work for visible light applications have until now focused on pure dielectric structures, interestingly, recent calculations have shown that metallo-dielectric structures should also be considered as having very interesting photonic properties in the visible, including, if one neglects absorption, a complete band gap.6–8 And even with absorption taken into account, it seems that for relatively thin photonic crystals most of the interesting optical properties remain.8

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. P. Bykov, Spontaneous emission from a medium with a band spectrum, Sov. J. Quantom Electron. 4, 861 (1975).

    Article  ADS  Google Scholar 

  2. S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 2486 (1987).

    Google Scholar 

  3. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059 (1987).

    Article  ADS  Google Scholar 

  4. J. D. Joannopoulos, R. D. Meade, and J. N. Winn. Photonic Crystals ed., Princeton Univ. Press, Princeton, (1995).

    MATH  Google Scholar 

  5. T.F. Krauss and R.M. Delarue, Photonic Crystals in the Optical Regime — Past, Present and Future, Progress in Quantum Electronics 23, 51 (1999).

    Article  ADS  Google Scholar 

  6. A. Moroz, Three-dimensional complete photonic-band-gap structures in the visible, Phys. Rev. Lett. 83, 5274 (1999).

    Article  ADS  Google Scholar 

  7. A. Moroz, Photonic crystals of coated metallic spheres, Europhys. Lett. 50, 466 (2000).

    Article  ADS  Google Scholar 

  8. W. Y. Zhang, X. Y. Lei, Z. L. Wang et al., Robust photonic band gap from tunable scatterers, Phys. Rev. Lett. 84, 2853 (2000).

    Article  ADS  Google Scholar 

  9. O. D. Velev and E. W. Kaler, Structured porous materials via colloidal crystal templating: From inorganic oxides to metals, Adv. Mater. 12, 531 (2000).

    Article  Google Scholar 

  10. W.B. Russel, D.A. Saville, and W.R. Schowalter. Colloidal Dispersions ed., Cambridge University Press, Cambridge, (1995).

    Google Scholar 

  11. T. Palberg, Colloidal crystallization dynamics, Curr. Opin. Colloid Interface Sci. 2, 607 (1997).

    Article  Google Scholar 

  12. O. Pouliquen, M. Nicolas, and P. D. Weidman, Crystallization of non-Brownian spheres under horizontal shaking, Phys. Rev. Lett. 19, 3640 (1997).

    Article  ADS  Google Scholar 

  13. A. van Blaaderen and A. Vrij, Synthesis and Characterization of Colloidal Dispersions of Fluorescent, Monodisperse Silica Spheres, Langmuir 8, 2921 (1992).

    Article  Google Scholar 

  14. N. A. M. Verhaegh and A. van Blaaderen, Dispersions of Rhodamine-Labeled Silica Spheres — Synthesis, Characterization, and Fluorescence Confocal Scanning Laser Microscopy, Langmuir 10, 1427 (1994).

    Article  Google Scholar 

  15. A. van Blaaderen, From the de Broglie to visible wavelengths: Manipulating electrons and photons with colloids, MRS Bull. 23, 39 (1998).

    Google Scholar 

  16. F. J. Arriagada and K. Osseoasare, Synthesis of Nanometer-Sized Silica By Controlled Hydrolysis in Reverse Micellar Systems, in: Colloid Chemistry of Silica, Amer. Chemical Soc., Washington, Vol. 234, (1994).

    Google Scholar 

  17. W. K. Kegel and A. van Blaaderen, Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions, Science 287, 290 (2000).

    Article  ADS  Google Scholar 

  18. K.P. Velikov and A. van Blaaderen, ZnS-core silica-shell colloids for photonic applications, Submitted (2000).

    Google Scholar 

  19. A. van Blaaderen, R. Ruel, and P. Wiltzius, Template-directed colloidal crystallization Nature 385, 321 (1997).

    Google Scholar 

  20. U. Dassanayake, S. Fraden, and A. van Blaaderen, Structure of electrorheological fluids, J. Chem. Phys. 112, 3851 (2000).

    Article  ADS  Google Scholar 

  21. R. M. Amos, J. G. Rarity, P. R. Tapster et al., Fabrication of large-area face-centered-cubic hard-sphere colloidal crystals by shear alignment, Phys. Rev. E 61, 2929 (2000).

    Article  ADS  Google Scholar 

  22. K. Visscher and S. M. Block, Versatile Optical Traps with Feedback Control, in: Methods in Enzymology, R B Vallee, ed Academic Press, San Diego, Vol. 298, (1997).

    Google Scholar 

  23. D. L. J. Vossen, T. van Dillen, M. J. A. de Dood, T. Zijlstra, E. van der Drift, A. Polman, A. van Blaaderen, Novel method for solution growth of thin silica films from tetraethoxysilane, Adv. Materials 12, 1434 (2000).

    Article  Google Scholar 

  24. P. Jiang, J. F. Bertone, K. S. Hwang et al., Single-crystal colloidal multilayers of controlled thickness, Chem. Mat. 11, 2132 (1999).

    Article  Google Scholar 

  25. E. Snoeks, A. van Blaaderen, T. van Dillen et al., Colloidal ellipsoids with continuously variable shape, Adv. Materials, 12, 1511 (2000).

    Article  Google Scholar 

  26. S. Neser, C. Bechinger, P. Leiderer et al., Finite-size effects on the closest packing of hard spheres, Phys. Rev. Lett. 79, 2348 (1997).

    Article  ADS  Google Scholar 

  27. S. Pronk and D. Frenkel, Can stacking faults in hard-sphere crystals anneal out spontaneously?, J. Chem. Phys. 110, 4589 (1999).

    Article  ADS  Google Scholar 

  28. J. Aizenberg, P. V. Braun, and P. Wiltzius,Patterned colloidal deposition controlled by electrostatic and capillary forces, Phys. Rev. Lett. 84, 2997 (2000).

    Article  ADS  Google Scholar 

  29. R. Tao and J. M. Sun,3-Dimensional Structure of Induced Electrorheological Solid, Phys. Rev. Lett. 67, 398 (1991).

    Article  ADS  Google Scholar 

  30. R. Tao and Q. Jiang, Simulation of Structure Formation in an Electrorheological Fluid, Phys. Rev. Lett. 73, 205 (1994).

    Article  ADS  Google Scholar 

  31. A. Ashkin, Acceleration and trapping of particles by radiation pressure, Phys. Rev. Lett. 24, 156 (1970).

    Article  ADS  Google Scholar 

  32. A Ashkin and J M Dziedic, Optical levitation by radiation pressure, Phys. Rev. Lett. 19, 283 (1971).

    Google Scholar 

  33. D G Grier, Optical tweezers in colloid and interface science, Curr. Opin. Colloid Interface Sci. 2, 264 (1997).

    Article  Google Scholar 

  34. E. R. Dufresne and D. G. Grier, Optical tweezer arrays and optical substrates created with diffractive optics, Rev. Scient. Instr. 69, 1974 (1998).

    Article  ADS  Google Scholar 

  35. F. Burmeister, W. Badowsky, T. Braun et al., Colloid monolayer lithography-A flexible approach for nanostructuring of surfaces, Appl. Surf. Sci. 145, 461 (1999).

    Article  Google Scholar 

  36. P. Bartlett, R. H. Ottewill, and P. N. Pusey, Freezing of Binary-Mixtures of Colloidal Hard-Spheres J. Chem. Phys. 93, 1299 (1990).

    Article  ADS  Google Scholar 

  37. A. Moroz and C. Sommers, Photonic band gaps of three-dimensional face-centred cubic lattices, J. Phys.-Condes. Matter 11, 997 (1999).

    Article  ADS  Google Scholar 

  38. A. Blanco, E. Chomski, S. Grabtchak et al., Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres Nature 405, 437 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Van Blaaderen, A. et al. (2001). Manipulating Colloidal Crystallization for Photonic Applications: From Self-Organization to Do-it-Yourself Organization. In: Soukoulis, C.M. (eds) Photonic Crystals and Light Localization in the 21st Century. NATO Science Series, vol 563. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0738-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0738-2_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6948-6

  • Online ISBN: 978-94-010-0738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics