Skip to main content

Experimental Probes of the Optical Properties of Photonic Crystals

  • Chapter

Part of the book series: NATO Science Series ((ASIC,volume 563))

Abstract

The propagation of electromagnetic radiation in three-dimensional periodic dielectric structures is strongly modified if the wavelength of the radiation is on the order of the lattice spacing.1–5 Such structures are called photonic crystals. Their periodicity gives rise to photonic band structures in a way that is analogous to electronic band structures.6 Much of the recent interest in photonic crystals stems from the possibility of making lattices for which there exists a range of frequencies in which waves cannot propagate in any direction in the crystal.1–4 Such a photonic band gap occurs if the coupling between light and lattice is sufficiently strong. The coupling is conveniently gauged by the polarizability per volume of the scatters.7 If a lattice could be constructed with a photonic band gap at optical frequencies, this would result in spectacular effects such as the inhibition of spontaneous emission,3 and localization of light.4

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.M. Soukoulis, ed., Photonic Band Gap Materials, Kluwer, Dordrecht (1996).

    Book  Google Scholar 

  2. J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals, Princeton University Press, Princeton NJ (1995).

    MATH  Google Scholar 

  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).

    Article  ADS  Google Scholar 

  4. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).

    Article  ADS  Google Scholar 

  5. R.W. James, The Optical Principles of the Diffraction of X-rays, Bell, London (1962).

    Google Scholar 

  6. N.W. Ashcroft and N.D. Mermin, Solid State Physics, Holt, Rinehart, and Winston, New York (1976).

    Google Scholar 

  7. W.L. Vos, R. Sprik, A. van Blaaderen, A. Imhof, A. Lagendijk, and G.H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B 53, 16231 (1996); erratum: Ibid. 55, 1903 (1997).

    Article  ADS  Google Scholar 

  8. E. Yablonovitch, T.J. Gmitter, and K.M. Leung, “Photonic band structure: the face centered cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295 (1991).

    Article  ADS  Google Scholar 

  9. U. Grün ing, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm,” Appl. Phys. Lett. 68, 747 (1996).

    Article  ADS  Google Scholar 

  10. T.F. Krauss, R.M. DeLaRue, and S. Brand, “Two-dimensional photonic bandgap structures operating at near-infrared wavelengths,” Nature 383, 699 (1996).

    Article  ADS  Google Scholar 

  11. S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251 (1998).

    Article  ADS  Google Scholar 

  12. N. Yamamoto, S. Noda, and A. Chutinan, “Development of one period of a three-dimensional photonic crystal in the 5-10 μm wavelength region by wafer fusion and laser beam diffraction pattern observation techniques,” Jpn. J. Appl. Phys. 37, L1052 (1998).

    Article  ADS  Google Scholar 

  13. A. Imhof and D.J. Pine, “Ordered macroporous materials by emulsion templating,” Nature 389, 948 (1997).

    Article  ADS  Google Scholar 

  14. O.D. Velev and E. Kaler, “Structured porous materials via colloidal crystal templating: from inorganic oxides to metals,” Adv. Mater. 12, 531 (2000), and references therein.

    Article  Google Scholar 

  15. B.T. Holland, C.F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spherical voids,” Science 281, 538 (1998).

    Article  ADS  Google Scholar 

  16. J.E.G.J. Wijnhoven and W.L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802 (1998).

    Article  ADS  Google Scholar 

  17. A.A. Zakhidov, R.H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S.O. Dantas, J. Marti, and V.G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897 (1998).

    Article  ADS  Google Scholar 

  18. M.S. Thyssen, R. Sprik, J.E.G.J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, and W.L. Vos, “Inhibited light propagation and broad band reflection in photonic air-sphere crystals,” Phys. Rev. Lett. 83, 2730 (1999).

    Article  ADS  Google Scholar 

  19. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondia, G.A. Ozin, O. Toader, and H.M. van Driel, “Large scale synthesis of a silicon photonic crystal with a complete three-dimensional photonic band gap near 1.5 micrometers,” Nature 405, 437 (2000).

    Article  ADS  Google Scholar 

  20. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152 (1990).

    Article  ADS  Google Scholar 

  21. H.S. Söz iier, J.W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962 (1992).

    Article  ADS  Google Scholar 

  22. M. Megens, C.M. van Kats, P. Bösecke, and W.L. Vos, “In-situ characterization of colloidal spheres by synchrotron small-angle x-ray scattering,” Langmuir 13, 6120 (1997).

    Article  Google Scholar 

  23. M. Megens, C.M. van Kats, P. Bösecke, and W.L. Vos, “Synchrotron small angle x-ray scattering of colloids and photonic colloidal crystals,” J. Appl. Cryst. 13, 637 (1997).

    Article  Google Scholar 

  24. W.L. Vos, M. Megens, C.M. van Kats, and P. Bösecke, “X-ray diffraction of photonic colloidal single crystals,” Langmuir 13, 6004 (1997).

    Article  Google Scholar 

  25. M. Megens, J.E.G.J. Wijnhoven, A. Lagendijk, and W.L. Vos, “Fluorescence lifetimes and linewidths of dye in photonic crystals,” Phys. Rev. A 59, 4727 (1999).

    Article  ADS  Google Scholar 

  26. M. Megens, Ph.D. thesis, Universiteit van Amsterdam (October 1999), available as pdf from our website.

    Google Scholar 

  27. A. Imhof, M. Megens, J.J. Engelberts, D.T.N. de Lang, R. Sprik, and W.L. Vos, “Spec-troscopy of Fluorescein (FITC) dyed colloidal silica spheres,” J. Phys. Chem. B 103, 1408 (1999).

    Article  Google Scholar 

  28. M. Megens, J.E.G.J. Wijnhoven, A. Lagendijk, and W.L. Vos, “Light sources inside photonic crystals,” J. Opt. Soc. Am. B 16, 1403 (1999).

    Article  ADS  Google Scholar 

  29. M. Megens, H.P. Schriemer, A. Lagendijk, and W.L. Vos, “Comment on: Spontaneous emission of organic molecules embedded in photonic crystal,” Phys. Rev. Leu. 83, 5401 (1999).

    Article  ADS  Google Scholar 

  30. J.E.G.J. Wijnhoven, L. Bechger, and W.L. Vos, to be published.

    Google Scholar 

  31. J.E.G.J. Wijnhoven, S.J.M. Zevenhuizen, M. Hendriks, D. Vanmaekelbergh, J.J. Kelly, and W.L. Vos, “Electrochemical assembly of ordered macropores in gold.” Adv. Mater. 12, 888 (2000).

    Article  Google Scholar 

  32. M. Megens and W.L. Vos, “Excursions of particles in a colloidal crystal,” Phys. Rev. Lett. (submitted, 2000).

    Google Scholar 

  33. W.L. Vos, R. Sprik, A. Lagendijk, G.H. Wegdam, A. Imhof, and A. van Blaaderen, “Dispersive effects on light scattering of photonic colloidal crystals,” 1994 European Quantum Electronics Conference, Postdeadline digest, IEEE/LEOS, Piscataway NJ, (1994), paper EPD6.

    Google Scholar 

  34. W.L. Vos, J.E.G.J. Wijnhoven, and M. Megens, “Experimental probe of gaps in photonic crystals,” Conference on Lasers and Electro-Optics Europe, IEEE/LEOS, Piscataway NJ, 1998), paper CFB6.

    Google Scholar 

  35. W.L. Vos, M. Megens, C.M. van Kats, and P. Bösecke, “Transmission and diffraction by photonic colloidal crystals,” J. Phys.: Condens. Matter 8, 9503 (1996).

    Article  ADS  Google Scholar 

  36. K.W.K. Shung and Y.C. Tsai, “Surface effects and band measurements in photonic crystals,” Phys. Rev.B 48, 11265 (1993).

    Article  ADS  Google Scholar 

  37. R.J. Spry and D.J. Kosan, “Theoretical analysis of the crystalline colloidal array filter,” Appl. Spectrosc. 40, 782 (1986).

    Article  ADS  Google Scholar 

  38. A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys.: Condens. Matter 11, 997 (1999).

    Article  ADS  Google Scholar 

  39. H.M. van Driel and W.L. Vos, “Multiple Bragg wave coupling in photonic band gap crystals,” Phys. Rev. B 62, 9872 (2000).

    Article  ADS  Google Scholar 

  40. W.L. Vos and H.M. van Driel, “Higher order Bragg diffraction by strongly photonic fec crystals: onset of a photonic bandgap,” Phys. Lett. A 272, 101 (2000).

    Article  ADS  Google Scholar 

  41. A. Imhof, W.L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Phys. Rev. Lett. 83, 2942 (1999).

    Article  ADS  Google Scholar 

  42. J.F. Bertone, P. Jiang, K.S. Hwang, D.M. Mittleman, and V.L. Colvin, “Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals,” Phys. Rev. Lett. 83, 300 (1999).

    Article  ADS  Google Scholar 

  43. Yu.A. Vlasov, V.N. Astratov, O.Z. Karimov, and A.A. Kaplyanskii, “Existence of a photonic pseudogap for visible light in synthetic opal,” Phys. Rev. B 55, 13357 (1997).

    Article  ADS  Google Scholar 

  44. E. Öz bay, “Micromachined photonic band gap crystals: from microwave to far-infrared,” in: C.M. Soukoulis, ed., Photonic Band Gap Materials, Kluwer, Dordrecht (1996), p. 41.

    Chapter  Google Scholar 

  45. A.M. Steinberg, P.G. Kwiat, and R.Y. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett. 71, 708 (1993).

    Article  ADS  Google Scholar 

  46. C. Spielmann, R. Szipocs, A. Stingl, and F. Krausz, “ Tunneling of optical pulses through photonic band gaps,” Phys. Rev. Lett. 73, 2308 (1994).

    Article  ADS  Google Scholar 

  47. M. Scalora, R.J. Flynn, S.B. Reinhardt, R.L. Fork, M.J. Bloemer, M.D. Tocci, C.M. Bow-den, H.S. Ledbetter, J.M. Bendickson, and R.P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078 (1996)

    Article  ADS  Google Scholar 

  48. Yu.A. Vlasov, S. Petit, G. Klein, B. Hönerlage, and C. Hirlimann, “Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal,” Phys. Rev. E 60, 1030 (1999).

    Article  ADS  Google Scholar 

  49. R.H.J. Kop and R. Sprik, “Phase sensitive interferometry with ultrashort optical pulses,” Rev. Sci. Instrum., 66, 5459 (1995).

    Article  ADS  Google Scholar 

  50. E. Lidorikis, Q. Li, and C.M. Soukoulis, “Optical bistability in colloidal crystals,” Phys. Rev.E 55, 3613 (1997).

    Article  ADS  Google Scholar 

  51. R.H.J. Kop, P. de Vries, R. Sprik, and A. Lagendijk, “Kramers-Kronig relations for an interferometer,” Opt. Commun. 138, 118 (1997).

    Article  ADS  Google Scholar 

  52. D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).

    Article  ADS  Google Scholar 

  53. S. Haroche, “Cavity quantum electrodynamics,” in Systèmes fondamentaux en optique quantique/Fundamental systems in quantum optics, Eds. J. Dalibard, J.-M. Raimond, J. Zinn-Justin, North-Holland, Amsterdam (1992).

    Google Scholar 

  54. H.P. Schriemer, H.M. van Driel, A.F. Koenderink, and W.L. Vos, “Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals,” Phys. Rev. A. Rapid Comm. 63 (January 1, 2001).

    Google Scholar 

  55. F. DeMartini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).

    Article  ADS  Google Scholar 

  56. J. Martorell and N.M. Lawandy, “Observation of inhibited spontaneous emission in a periodic dielectric structure,” Phys. Rev. Lett. 65, 1877 (1990).

    Article  ADS  Google Scholar 

  57. E. P. Petrov, V. N. Bogomolov, I.I. Kalosha, and S V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77 (1998); “Modification of the spontaneous emission of dye molecules in photonic crystals,” Acta Phys. Pol. A 94, 761 (1998).

    Article  ADS  Google Scholar 

  58. P.W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492 (1958); S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169 (1984).

    Google Scholar 

  59. D.S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light,” Nature 390, 671 (1997).

    Article  ADS  Google Scholar 

  60. F.J.P. Schuurmans, M. Megens, D. Vanmaekelbergh, and A. Lagendijk, “Light scattering near the localization transition in macroporous GaP networks,” Phys. Rev. Lett. 83, 2183 (1999).

    Article  ADS  Google Scholar 

  61. Y. Kuga and A. Ishimaru, “Retroreflectance from a dense distribution of spherical particles,” J. Opt. Soc. Am. A 8, 831 (1984), M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692 (1985); P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696 (1985).

    Article  ADS  Google Scholar 

  62. E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev.Lett. 56, 1471 (1986).

    Article  ADS  Google Scholar 

  63. M. B. van der Mark, M. P. van Albada, and A. Lagendijk, “Light scattering in strongly scattering media: Multiple scattering and weak localization,” Phys. Rev. B 37, 3575 (1988).

    Article  ADS  Google Scholar 

  64. A.F. Koenderink, M. Megens, G. van Soest, W.L Vos, and A. Lagendijk, “Enhanced backscattering from photonic crystals,” Phys. Lett. A 268, 104 (2000).

    Article  ADS  Google Scholar 

  65. A. Lagendijk, R. Vreeker, and P. de Vries, “Influence of internal reflection on diffusive transport in strongly scattering media,” Phys. Lett. A 136, 81 (1989).

    Article  ADS  Google Scholar 

  66. H. C. van der Hülst, Light Scattering by Small Particles, Dover, New York (1981).

    Google Scholar 

  67. P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena, Academic, San Diego (1995).

    Google Scholar 

  68. D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “An accurate technique to record the angular distribution of backscattered light,” Rev. Sci. Instrum. 66, 5473 (1995).

    Article  ADS  Google Scholar 

  69. K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3986 (1998).

    Article  ADS  Google Scholar 

  70. R. Biswas, M.M. Sigalas, G. Subramania, C.M. Soukoulis, and K.M. Ho, “Photonic band gaps of porous solids,” Phys. Rev. B 61, 4549 (2000).

    Article  ADS  Google Scholar 

  71. D. Labilloy, H. Benisty, C. Weisbuch, T.F. Krauss, D. Cassagne, C. Jouanin, R. Houdre, U. Oesterle, and V. Bardinal, “Diffraction efficiency and guided light control by two dimensional photonic band gap lattices,” IEEE J. Quant. Electr. 35, 1045 (1999).

    Article  ADS  Google Scholar 

  72. W.M. Robertson, G. Arjavalingam, R.D. Meade, K.D. Brommer, A.M. Rappe, and J.D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett. 68, 2023 (1992).

    Article  ADS  Google Scholar 

  73. K. Sakoda, “Group-theoretical classification of eigenmodes in three-dimensional photonic lattices,” Phys. Rev. B 55, 15345 (1997).

    Article  ADS  Google Scholar 

  74. R. Sprik, B.A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265 (1996).

    Article  ADS  Google Scholar 

  75. T. Suzuki and P.K.L. Yu, “Emission power of an electric dipole in the photonic band structure of the fec lattice,” J. Opt. Soc. Am. B 12, 570 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem L. Vos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vos, W.L., van Driel, H.M., Megens, M., Koenderink, A.F., Imhof, A. (2001). Experimental Probes of the Optical Properties of Photonic Crystals. In: Soukoulis, C.M. (eds) Photonic Crystals and Light Localization in the 21st Century. NATO Science Series, vol 563. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0738-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0738-2_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6948-6

  • Online ISBN: 978-94-010-0738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics