Skip to main content

Bionanocomposites of Regenerated Cellulose Reinforced with Halloysite Nanoclay and Graphene Nanoplatelets: Characterizations and Properties

  • Chapter
  • First Online:
Eco-friendly Polymer Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 75))

Abstract

In recent years, the development of environmentally friendly materials obtained from renewable resources has attracted immense interest due to the new sustainable development policies. Cellulose is a readily available, naturally occurring biodegradable, and biocompatible linear polysaccharide. Recently, room temperature ionic liquids have been used as solvents to produce regenerated cellulose (RC) due to their attractive properties such as good chemical and thermal stability, low flammability, low melting point, and ease of recycling. Polymer/nanofiller nanocomposites are believed to have strong potential to widen polymer applications due to enhanced performance. It is also widely accepted that the incorporation of small amount of nanofiller (less than 5 wt%) into bio-based matrixes to produce nano-biocomposite materials with enhanced mechanical, permeability, and thermal properties. The tubular silica-based naturally occurring nanofiller, halloysite nanotubes (HNT), has been investigated due to its high surface area, unique geometry, and its potential to make the hydrogen bonding with polymers to disperse well in the matrix. Graphene nanoplatelets (GNP) have also attracted enormous attention among polymer engineers over the last few years due to its unique electrical, thermal, and mechanical properties. Single layer two-dimensional GNP sheet is considered as the strongest material along with the high surface area and aspect ratio. The chapter aims to highlight the effect of the addition of two different types of nanofillers such as HNT and GNP to produce RC nanocomposites on selected properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullayev E, Joshi A, Wei W, Zhao Y, Lvov Y (2012) Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 6(8):7216–7226

    Article  CAS  Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1–2):1–63

    Article  Google Scholar 

  • Arce A, Earle MJ, Katdare SP, Rodríguez H, Seddon KR (2007) Phase equilibria of mixtures of mutually immiscible ionic liquids. Fluid Phase Equilib 261(1–2):427–433

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    Article  Google Scholar 

  • Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  CAS  Google Scholar 

  • Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34(2):125–155

    Article  CAS  Google Scholar 

  • Bredereck K, Hermanutz F (2005) Man–made cellulosics. Rev Prog Color Relat Top 35(1):59–75

    Article  CAS  Google Scholar 

  • Chandrasekaran S, Seidel C, Schulte K (2013) Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: mechanical, electrical and thermal properties. Eur Polymer J 49(12):3878–3888

    Article  CAS  Google Scholar 

  • Chivrac F, Pollet E, Avérous L (2009) Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater Sci Eng R Rep 67(1):1–17

    Article  Google Scholar 

  • Crosthwaite JM, Aki SNVK, Maginn EJ, Brennecke JF (2004) Liquid phase behavior of imidazolium-based ionic liquids with alcohols. J Phys Chem B 108(16):5113–5119

    Article  CAS  Google Scholar 

  • De Silva RT, Pasbakhsh P, Goh KL, Chai S-P, Ismail H (2013) Physico-chemical characterisation of chitosan/halloysite composite membranes. Polym Testing 32(2):265–271

    Article  Google Scholar 

  • Debelak B, Lafdi K (2007) Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 45(9):1727–1734

    Article  CAS  Google Scholar 

  • Du M, Guo B, Lei Y, Liu M, Jia D (2008) Carboxylated butadiene–styrene rubber/halloysite nanotube nanocomposites: interfacial interaction and performance. Polymer 49(22):4871–4876

    Article  CAS  Google Scholar 

  • Feng L, Chen Z (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq 142(1–3):1–5

    Article  Google Scholar 

  • Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26(9):1473–1524

    Article  CAS  Google Scholar 

  • Graenacher C, Sallmann R (1939) Cellulose solutions and process of making same. Google Patents

    Google Scholar 

  • Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807

    Article  CAS  Google Scholar 

  • Guo B, Chen F, Lei Y, Liu X, Wan J, Jia D (2009) Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by sorbic acid. Appl Surf Sci 255(16):7329–7336

    Article  CAS  Google Scholar 

  • Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD (2003) Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc 125(22):6632–6633

    Article  CAS  Google Scholar 

  • Han J, Zhou C, French AD, Han G, Wu Q (2013) Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 94(2):773–781

    Article  CAS  Google Scholar 

  • Han S, Li J, Zhu S, Chen R, Wu Y, Zhang X, Yu Z (2009) sotential applications of ionic liquids in wood related industries

    Google Scholar 

  • Hanid NA, Wahit MU, Guo Q, Mahmoodian S, Soheilmoghaddam M (2014) Development of regenerated cellulose/halloysites nanocomposites via ionic liquids. Carbohydr Polym 99:91–97

    Article  Google Scholar 

  • Hashemifard SA, Ismail AF, Matsuura T (2011) Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation: experimental. J Colloid Interf Sci 359(2):359–370

    Article  CAS  Google Scholar 

  • Hatui G, Bhattacharya P, Sahoo S, Dhibar S, Das CK (2014) Combined effect of expanded graphite and multiwall carbon nanotubes on the thermo mechanical, morphological as well as electrical conductivity of in situ bulk polymerized polystyrene composites. Compos A Appl Sci Manuf 56:181–191

    Article  CAS  Google Scholar 

  • Hedicke-Höchstötter K, Lim GT, Altstädt V (2009) Novel polyamide nanocomposites based on silicate nanotubes of the mineral halloysite. Compos Sci Technol 69(3–4):330–334

    Article  Google Scholar 

  • Hermanutz F, Gähr F, Uerdingen E, Meister F, Kosan B (2008) New developments in dissolving and processing of cellulose in ionic liquids. Macromol Symp 262(1):23–27

    Article  CAS  Google Scholar 

  • Hyden WL (1929) Manufacture and properties of regenerated cellulose films. Ind Eng Chem 21(5):405–410

    Article  CAS  Google Scholar 

  • Ioelovich M (2008) Cellulose as a nanostructured polymer: a short review

    Google Scholar 

  • Ismail H, Pasbakhsh P, Fauzi MNA, Abu Bakar A (2008) Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym Test 27(7):841–850

    Article  CAS  Google Scholar 

  • Johnson DL (1970) Method of preparing polymers from a mixture of cyclic amine oxides and polymers. Google Patents

    Google Scholar 

  • Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Halloysite clay minerals: a review. Clay Miner 40(4):383–426

    Article  CAS  Google Scholar 

  • Kalaitzidou K, Fukushima H, Drzal LT (2007) Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45(7):1446–1452

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (2004) General considerations on structure and reactivity of cellulose: section 2.1–2.1.4. Comprehensive cellulose chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 9–29

    Google Scholar 

  • Koel M (2005) Ionic liquids in chemical analysis. Crit Rev Anal Chem 35(3):177–192

    Article  CAS  Google Scholar 

  • Krassig HA (1996) Cellulose, structure, accessibility and reactivity: polymer monographs. Gordan and Breach Science Publishers, Netherlands, p 361

    Google Scholar 

  • Kubisa P (2005) Ionic liquids in the synthesis and modification of polymers. J Polym Sci Part A Polym Chem 43(20):4675–4683

    Article  CAS  Google Scholar 

  • Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  CAS  Google Scholar 

  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102(5):1368–1376

    Article  CAS  Google Scholar 

  • Liu D-T, Xia K-F, Cai W-H, Yang R-D, Wang L-Q, Wang B (2012) Investigations about dissolution of cellulose in the 1-allyl-3-alkylimidazolium chloride ionic liquids. Carbohydr Polym 87(2):1058–1064

    Article  CAS  Google Scholar 

  • Lin M-F, Thakur VK, Tan EJ, Lee PS (2011a) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504

    Article  CAS  Google Scholar 

  • Lin M-F, Thakur VK, Tan EJ, Lee PS (2011b) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578

    Article  CAS  Google Scholar 

  • Mahmoudian S, Wahit MU, Imran M, Ismail AF, Balakrishnan H (2012) A facile approach to prepare regenerated cellulose/graphene nanoplatelets nanocomposite using room-temperature ionic liquid. J Nanosci Nanotechnol 12(7):5233–5239

    Article  CAS  Google Scholar 

  • McCorsley CC (1979) Process for making amine oxide solution of cellulose. Google Patents

    Google Scholar 

  • McCorsley CC (1981) Extrusion, molecular orientation. Google Patents

    Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  Google Scholar 

  • Nishio Y (2006) Material functionalization of cellulose and related polysaccharides via diverse microcompositions. In: Klemm D (ed) Polysaccharides II, vol 205. Springer, Berlin, pp 97–151

    Google Scholar 

  • Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55(4):241–249

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  • Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A 373(1–2):1–56

    Article  CAS  Google Scholar 

  • Oyefusi A, Olanipekun O, Neelgund GM, Peterson D, Stone JM, Williams E, Carson L, Regisford G, Oki A (2014) Hydroxyapatite grafted carbon nanotubes and graphene nanosheets: promising bone implant materials. Spectrochim Acta Part A Mol Biomol Spectrosc 132:410–416

    Article  CAS  Google Scholar 

  • Prashantha K, Schmitt H, Lacrampe MF, Krawczak P (2011) Mechanical behaviour and essential work of fracture of halloysite nanotubes filled polyamide 6 nanocomposites. Compos Sci Technol 71(16):1859–1866

    Article  CAS  Google Scholar 

  • Rahatekar SS, Rasheed A, Jain R, Zammarano M, Koziol KK, Windle AH, Gilman JW, Kumar S (2009) Solution spinning of cellulose carbon nanotube composites using room temperature ionic liquids. Polymer 50(19):4577–4583

    Article  CAS  Google Scholar 

  • Rath T, Li Y (2011) Nanocomposites based on polystyrene-b-poly(ethylene-r-butylene)-b-polystyrene and exfoliated graphite nanoplates: effect of nanoplatelet loading on morphology and mechanical properties. Compos A Appl Sci Manuf 42(12):1995–2002

    Article  Google Scholar 

  • Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2(12):1096–1107

    Article  CAS  Google Scholar 

  • Rogers RD, Seddon KR (2003) Ionic liquids: solvents of the future? Science 302(5646):792–793

    Article  Google Scholar 

  • Rosenau T, Hofinger A, Potthast A, Kosma P (2003) On the conformation of the cellulose solvent N-methylmorpholine-N-oxide (NMMO) in solution. Polymer 44(20):6153–6158

    Article  CAS  Google Scholar 

  • Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26(9):1763–1837

    Article  CAS  Google Scholar 

  • Schaefer DW, Justice RS (2007) How nano are nanocomposites? Macromolecules 40(24):8501–8517

    Article  CAS  Google Scholar 

  • Schüth F, Rinaldi R, Meine N, Käldström M, Hilgert J, Rechulski MDK (2014) Mechanocatalytic depolymerization of cellulose and raw biomass and downstream processing of the products. Catal Today 234:24–30

    Article  Google Scholar 

  • Singh B (1996) Why does halloysite roll? A new model. Clays Clay Miner 44(2):191–196

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK, Mehta IK, Shama A, Khanna AJ, Rana RK, Rana AK (2009a) Surface-modified Hibiscus sabdariffa fibers: physicochemical, thermal, and morphological properties evaluation. Int J Polym Anal Charact 14(8):695–711

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK, Mishra BN (2009b) Study of Grewia Optiva fiber reinforced urea-formaldehyde composites. J Polym Mater 26:81–90

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2009a) Grewia optiva fiber reinforced novel, low cost polymer composites. J Chem 6:71–76

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2009b) Synthesis, characterisation and analysis of Hibiscus Sabdariffa fibre reinforced polymer matrix based composites. Polym Polym Compos 17:189–194

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2009c) Fabrication and characterization of H. sabdariffa fiber-reinforced green polymer composites. Polym Plast Technol Eng 48:482–487

    Article  CAS  Google Scholar 

  • Sinha Ray S, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079

    Article  Google Scholar 

  • Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641

    Article  Google Scholar 

  • Soheilmoghaddam M, Pasbakhsh P, Wahit MU, Bidsorkhi HC, Pour RH, Whye WT, De Silva RT (2014a) Regenerated cellulose nanocomposites reinforced with exfoliated graphite nanosheets using BMIMCL ionic liquid. Polymer 55(14):3130–3138

    Article  CAS  Google Scholar 

  • Soheilmoghaddam M, Sharifzadeh G, Pour RH, Wahit MU, Whye WT, Lee XY (2014b) Regenerated cellulose/β-cyclodextrin scaffold prepared using ionic liquid. Mater Lett 135:210–213

    Article  CAS  Google Scholar 

  • Soheilmoghaddam M, Wahit MU (2013) Development of regenerated cellulose/halloysite nanotube bionanocomposite films with ionic liquid. Int J Biol Macromol 58:133–139

    Article  CAS  Google Scholar 

  • Soheilmoghaddam M, Wahit MU, Mahmoudian S, Hanid NA (2013) Regenerated cellulose/halloysite nanotube nanocomposite films prepared with an ionic liquid. Mater Chem Phys 141(2–3):936–943

    Article  CAS  Google Scholar 

  • Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975

    Article  CAS  Google Scholar 

  • Tang Y, Deng S, Ye L, Yang C, Yuan Q, Zhang J, Zhao C (2011) Effects of unfolded and intercalated halloysites on mechanical properties of halloysite–epoxy nanocomposites. Compos A Appl Sci Manuf 42(4):345–354

    Article  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012a) Rapid synthesis of MMA grafted pine needles using microwave radiation. Polym-Plast Technol Eng 51:1598–1604

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012b) Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J Polym Environ 20:412–421

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012c) Graft copolymerization of methyl acrylate onto cellulosic biofibers: synthesis, characterization and applications. J Polym Environ 20:164–174

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013a) Development of functionalized cellulosic biopolymers by graft copolymerization. Int J Biol Macromol 62:44–51

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013b) Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym 98:820–828

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013c) Synthesis of lignocellulosic polymer with improved chemical resistance through free radical polymerization. Int J Biol Macromol 61:121–126

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013d) Graft copolymers from natural polymers using free radical polymerization. Int J Polym Anal Charact 18:495–503

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013e) Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 97:18–25

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014a) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014b) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014c) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2014a) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19(3):256–271

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014b) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092

    Article  CAS  Google Scholar 

  • Thakur VK, Vennerberg D, Kessler MR (2014c) Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl Mater Interf 6:9349–9356

    Article  CAS  Google Scholar 

  • Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014d) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677–6684

    Article  CAS  Google Scholar 

  • Tian M, Qu L, Zhang X, Zhang K, Zhu S, Guo X, Han G, Tang X, Sun Y (2014) Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Carbohydr Polym 111:456–462

    Article  CAS  Google Scholar 

  • Urszula D (2008) General review of ionic liquids and their properties. Ionic liquids in chemical analysis. CRC Press, Boca Raton, pp 1–71

    Google Scholar 

  • Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S (2011) Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49(1):198–205

    Article  CAS  Google Scholar 

  • Visser AE, Swatloski RP, Rogers RD (2000) pH-dependent partitioning in room temperature ionic liquids provides a link to traditional solvent extraction behavior. Green Chem 2(1):1–4

    Article  CAS  Google Scholar 

  • Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem 11(3):417–424

    Article  CAS  Google Scholar 

  • Wang R, Wang L (2014) Substituted cyclic compounds and methods of use. Google Patents

    Google Scholar 

  • Wang X, Jin J, Song M (2012) Cyanate ester resin/graphene nanocomposite: curing dynamics and network formation. Eur Polymer J 48(6):1034–1041

    Article  CAS  Google Scholar 

  • Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2084

    Article  CAS  Google Scholar 

  • Wilkes J, Wasserscheid S, Welton T (2008) Ionic liquids in synthesis, vol 1. Willey-VCH Verlags Gmbh & Co KgaA, New Delhi

    Google Scholar 

  • Wilkes JS (2002) A short history of ionic liquids-from molten salts to neoteric solvents. Green Chem 4(2):73–80

    Article  CAS  Google Scholar 

  • Wu RL, Wang XL, Wang YZ, Bian XC, Li F (2009) Cellulose/soy protein isolate blend films prepared via room-temperature ionic liquid. Ind Eng Chem Res 48(15):7132–7136

    Article  CAS  Google Scholar 

  • Yamamoto H, Horii F (1993) CPMAS carbon-13 NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures. Macromolecules 26(6):1313–1317

    Article  CAS  Google Scholar 

  • Yamamoto H, Horn F (1994) In situ crystallization of bacterial cellulose I. Influences of polymeric additives, stirring and temperature on the formation celluloses I α and I β as revealed by cross polarization/magic angle spinning (CP/MAS)13C NMR spectroscopy. Cellulose 1(1):57–66

    Article  CAS  Google Scholar 

  • Yuan P, Southon PD, Liu Z, Green MER, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112(40):15742–15751

    Article  CAS  Google Scholar 

  • Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresour Technol 100(9):2580–2587

    Article  CAS  Google Scholar 

  • Zhang X, Liu X, Zheng W, Zhu J (2012) Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution. Carbohydr Polym 88(1):26–30

    Article  CAS  Google Scholar 

  • Zhang Y, Ouyang J, Yang H (2014) Metal oxide nanoparticles deposited onto carbon-coated halloysite nanotubes. Appl Clay Sci 95:252–259

    Article  CAS  Google Scholar 

  • Zhang YH, Hu DJ, Song W (2005) Study on CCD online system for monitoring a grinding wheel in process of point grinding on curve surface. Binggong Xuebao/Acta Armamentarii 26(2):201–204

    CAS  Google Scholar 

  • Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8(4):325–327

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mat Uzir Wahit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Soheilmoghaddam, M., Pour, R.H., Wahit, M.U., Balakrishnan, H. (2015). Bionanocomposites of Regenerated Cellulose Reinforced with Halloysite Nanoclay and Graphene Nanoplatelets: Characterizations and Properties. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 75. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2470-9_10

Download citation

Publish with us

Policies and ethics