Skip to main content

In Situ Localized Surface Plasmon Resonance Spectroscopy for Gold and Silver Nanoparticles

  • Chapter
  • First Online:
In-situ Characterization Techniques for Nanomaterials

Abstract

Localized surface plasmon resonance (LSPR) spectroscopy of metallic nanoparticles (NPs) is a powerful technique for chemical and biological sensing experiments. LSPR is responsible for the electromagnetic field enhancement that leads to surface-enhanced Raman scattering (SERS) and other surface-enhanced spectroscopic processes [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  2. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  3. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  4. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241:20–22

    CAS  Google Scholar 

  5. Piella J, Bastus NG, Puntes V (2016) Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem Mater 28:1066–1075

    Article  CAS  Google Scholar 

  6. Luo M, Huang H, Choi S-I, Zhang C, da Silva RR, Peng H-C, Li Z-Y, Liu J, He Z, Xia Y (2015) Facile synthesis of Ag nanorods with no plasmon resonance peak in the visible region by using pd decahedra of 16 nm in size as seeds. ACS Nano 9:10523–10532

    Article  CAS  Google Scholar 

  7. Wang W, Yan Y, Zhou N, Zhang H, Li D, Yang D (2016) Seed-mediated growth of Au nanorings with size control on Pd ultrathin nanosheets and their tunable surface plasmonic properties. Nanoscale 8:3704–3710

    Article  CAS  Google Scholar 

  8. Chao Y-J, Lyu Y-P, Wu Z-W, Lee C-L (2016) Seed-mediated growth of Ag nanocubes and their size-dependent activities toward oxygen reduction reaction. Int J Hydrog Energy 41:3896–3903

    Article  CAS  Google Scholar 

  9. Zhang X, Hicks EM, Zhao J, Schatz GC, Van Duyne RP (2005) Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography. Nano Lett 5:1503–1507

    Article  CAS  Google Scholar 

  10. Jin RC, Cao YC, Hao EC, Metraux GS, Schatz GC, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487–490

    Article  CAS  Google Scholar 

  11. Jin RC, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903

    Article  CAS  Google Scholar 

  12. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806–3819

    Article  CAS  Google Scholar 

  13. Cao J, Sun T, Grattan KTV (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sens Actuators B Chem 195:332–351

    Article  CAS  Google Scholar 

  14. Zhang Q, Zhou Y, Villarreal E, Lin Y, Zou S, Wang H (2015) Faceted gold nanorods: nanocuboids, convex nanocuboids, and concave nanocuboids. Nano Lett 15:4161–4169

    Article  CAS  Google Scholar 

  15. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  16. Tian L, Chen E, Gandra N, Abbas A, Singamaneni S (2012) Gold nanorods as plasmonic nanotransducers: distance-dependent refractive index sensitivity. Langmuir 28:17435–17442

    Article  CAS  Google Scholar 

  17. Scarabelli L, Grzelczak M, Liz-Marzán LM (2013) Tuning gold nanorod synthesis through prereduction with salicylic acid. Chem Mater 25:4232–4238

    Article  CAS  Google Scholar 

  18. Martinsson E, Shahjamali MM, Large N, Zaraee N, Zhou Y, Schatz GC, Mirkin CA, Aili D (2016) Influence of surfactant bilayers on the refractive index sensitivity and catalytic properties of anisotropic gold nanoparticles. Small 12:330–342

    Article  CAS  Google Scholar 

  19. Ye S, Song J, Tian Y, Chen L, Wang D, Niu H, Qu J (2015) Photochemically grown silver nanodecahedra with precise tuning of plasmonic resonance. Nanoscale 7:12706–12712

    Article  CAS  Google Scholar 

  20. Bansal A, Verma SS (2015) Optical response of noble metal alloy nanostructures. Phys Lett A 379:163–169

    Article  CAS  Google Scholar 

  21. Njoki PN, Lim IIS, Mott D, Park H-Y, Khan B, Mishra S, Sujakumar R, Luo J, Zhong C-J (2007) Size correlation of optical and spectroscopic properties for gold nanoparticles. J Phys Chem C 111:14664–14669

    Article  CAS  Google Scholar 

  22. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Article  CAS  Google Scholar 

  23. Tang B, Xu S, Jian X, Tao J, Xu W (2010) Real-time, in-situ, extinction spectroscopy studies on silver-nanoseed formation. Appl Spectrosc 64:1407–1415

    Article  CAS  Google Scholar 

  24. Amendola V, Meneghetti M (2009) Size evaluation of gold nanoparticles by UV−vis spectroscopy. J Phys Chem C 113:4277–4285

    Article  CAS  Google Scholar 

  25. Tang B, An J, Zheng X, Xu S, Li D, Zhou J, Zhao B, Xu W (2008) Silver nanodisks with tunable size by heat aging. J Phys Chem C 112:18361–18367

    Article  CAS  Google Scholar 

  26. O’Brien MN, Jones MR, Kohlstedt KL, Schatz GC, Mirkin CA (2015) Uniform circular disks with synthetically tailorable diameters: two-dimensional nanoparticles for plasmonics. Nano Lett 15:1012–1017

    Article  Google Scholar 

  27. Zhang Q, Li W, Moran C, Zeng J, Chen J, Wen L-P, Xia Y (2010) Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30−200 nm and comparison of their optical properties. J Am Chem Soc 132:11372–11378

    Article  CAS  Google Scholar 

  28. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712

    Article  CAS  Google Scholar 

  29. Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP (2007) Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett 7:1947–1952

    Article  CAS  Google Scholar 

  30. Zhao C, Zhu Y, Su Y, Guan Z, Chen A, Ji X, Gui X, Xiang R, Tang Z (2015) Tailoring plasmon resonances in aluminium nanoparticle arrays fabricated using anodic aluminium oxide. Adv Opt Mater 3:248–256

    Article  CAS  Google Scholar 

  31. Ma YW, Zhang LH, Wu ZW, Yi MF, Zhang J, Jian GS (2015) The study of tunable local surface plasmon resonances on Au-Ag and Ag-Au core-shell alloy nanostructure particles with DDA method. Plasmonics 10:1791–1800

    Article  CAS  Google Scholar 

  32. Verbruggen SW, Keulemans M, Martens JA, Lenaerts S (2013) Predicting the surface plasmon resonance wavelength of gold-silver alloy nanoparticles. J Phys Chem C 117:19142–19145

    Article  CAS  Google Scholar 

  33. Gao C, Hu Y, Wang M, Chi M, Yin Y (2014) Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au. J Am Chem Soc 136:7474–7479

    Article  CAS  Google Scholar 

  34. Tuersun P (2016) Simulated localized surface plasmon spectra of single gold and silver nanobars. Optik 127:3466–3470

    Article  CAS  Google Scholar 

  35. Liu H, Liu T, Zhang L, Han L, Gao C, Yin Y (2015) Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity. Adv Funct Mater 25:5435–5443

    Article  CAS  Google Scholar 

  36. Zohar N, Chuntonov L, Haran G (2014) The simplest plasmonic molecules: metal nanoparticle dimers and trimers. J Photochem Photobiol C Photochem Rev 21:26–39

    Article  CAS  Google Scholar 

  37. Tian XD, Zhou YD, Thota S, Zou SL, Zhao J (2014) Plasmonic coupling in single silver nanosphere assemblies by polarization-dependent dark-field scattering spectroscopy. J Phys Chem C 118:13801–13808

    Article  CAS  Google Scholar 

  38. Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961

    Article  CAS  Google Scholar 

  39. Fang A, White SL, Masitas RA, Zamborini FP, Jain PK (2015) One-to-one correlation between structure and optical response in a heterogeneous distribution of plasmonic constructs. J Phys Chem C 119:24086–24094

    Article  CAS  Google Scholar 

  40. Liu J, Kan C, Li Y, Xu H, Ni Y, Shi D (2015) Plasmonic properties of the end-to-end and side-by-side assembled Au nanorods. Plasmonics 10:117–124

    Article  CAS  Google Scholar 

  41. Chen TH, Reinhard BM (2016) Assembling color on the nanoscale: multichromatic switchable pixels from plasmonic atoms and molecules. Adv Mater 28:3522–3527

    Article  CAS  Google Scholar 

  42. Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos AP, Liu N (2010) Transition from isolated to collective modes in plasmonic oligomers. Nano Lett 10:2721–2726

    Article  CAS  Google Scholar 

  43. Tang Y, Zhang W, Liu J, Zhang L, Huang W, Huo F, Tian D (2015) A plasmonic nanosensor for lipase activity based on enzyme-controlled gold nanoparticles growth in situ. Nanoscale 7:6039–6044

    Article  CAS  Google Scholar 

  44. Gulati A, Liao H, Hafner JH (2006) Monitoring gold nanorod synthesis by localized surface plasmon resonance. J Phys Chem B 110:22323–22327

    Article  CAS  Google Scholar 

  45. Taz H, Ruther R, Malasi A, Yadavali S, Carr C, Nanda J, Kalyanaraman R (2015) In situ localized surface plasmon resonance (LSPR) spectroscopy to investigate kinetics of chemical bath deposition of CdS thin films. J Phys Chem C 119:5033–5039

    Article  CAS  Google Scholar 

  46. Jang GG, Blake P, Roper DK (2013) Rate-limited electroless gold thin film growth: a real-time study. Langmuir 29:5476–5486

    Article  CAS  Google Scholar 

  47. Tang B, Xu S, An J, Zhao B, Xu W, Lombardi JR (2009) Kinetic effects of halide ions on the morphological evolution of silver nanoplates. Phys Chem Chem Phys 11:10286–10292

    Article  CAS  Google Scholar 

  48. Rodriguez-Lorenzo L, Romo-Herrera JM, Perez-Juste J, Alvarez-Puebla RA, Liz-Marzan LM (2011) Reshaping and LSPR tuning of Au nanostars in the presence of CTAB. J Mater Chem 21:11544–11549

    Article  CAS  Google Scholar 

  49. Kedia A, Kumar PS (2013) Controlled reshaping and plasmon tuning mechanism of gold nanostars. J Mater Chem C 1:4540–4549

    Article  CAS  Google Scholar 

  50. Tang B, Xu S, Tao J, Wu Y, Xu W, Ozaki Y (2010) Two-dimensional correlation localized surface plasmon resonance spectroscopy for analysis of the interaction between metal nanoparticles and bovine serum albumin. J Phys Chem C 114:20990–20996

    Article  CAS  Google Scholar 

  51. Langhammer C, Larsson EM (2012) Nanoplasmonic in situ spectroscopy for catalysis applications. ACS Catal 2:2036–2045

    Article  CAS  Google Scholar 

  52. Larsson EM, Langhammer C, Zoric I, Kasemo B (2009) Nanoplasmonic probes of catalytic reactions. Science 326:1091–1094

    Article  CAS  Google Scholar 

  53. Larsson EM, Millet J, Gustafsson S, Skoglundh M, Zhdanov VP, Langhammer C (2012) Real time indirect nanoplasmonic in situ spectroscopy of catalyst nanoparticle sintering. ACS Catal 2:238–245

    Article  CAS  Google Scholar 

  54. Henry A-I, Bingham JM, Ringe E, Marks LD, Schatz GC, Van Duyne RP (2011) Correlated structure and optical property studies of plasmonic nanoparticles. J Phys Chem C 115:9291–9305

    Article  CAS  Google Scholar 

  55. Liu Y, Huang CZ (2013) Real-time dark-field scattering microscopic monitoring of the in situ growth of single ag@hg nanoalloys. ACS Nano 7:11026–11034

    Article  CAS  Google Scholar 

  56. Park Y, Lee C, Ryu S, Song H (2015) Ex situ and in situ surface plasmon monitoring of temperature-dependent structural evolution in galvanic replacement reactions at a single-particle level. J Phys Chem C 119:20125–20135

    Article  CAS  Google Scholar 

  57. Wang Y, Zou HY, Huang CZ (2015) Real-time monitoring of oxidative etching on single Ag nanocubes via light-scattering dark-field microscopy imaging. Nanoscale 7:15209–15213

    Article  CAS  Google Scholar 

  58. Shegai T, Langhammer C (2011) Hydride formation in single palladium and magnesium nanoparticles studied by nanoplasmonic dark-field scattering spectroscopy. Adv Mater 23:4409–4414

    Article  CAS  Google Scholar 

  59. Cheng J, Liu Y, Cheng X, He Y, Yeung ES (2010) Real time observation of chemical reactions of individual metal nanoparticles with high-throughput single molecule spectral microscopy. Anal Chem 82:8744–8749

    Article  CAS  Google Scholar 

  60. Shi L, Jing C, Ma W, Li D-W, Halls JE, Marken F, Long Y-T (2013) Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction. Angew Chem Int Ed 52:6011–6014

    Article  CAS  Google Scholar 

  61. Gao PF, Yuan BF, Gao MX, Li RS, Ma J, Zou HY, Li YF, Li M, Huang CZ (2015) Visual identification of light-driven breakage of the silver-dithiocarbamate bond by single plasmonic nanoprobes. Sci Rep 5:15427

    Article  CAS  Google Scholar 

  62. Novo C, Funston AM, Mulvaney P (2008) Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat Nanotechnol 3:598–602

    Article  CAS  Google Scholar 

  63. Collins SSE, Cittadini M, Pecharroman C, Martucci A, Mulvaney P (2015) Hydrogen spillover between single gold nanorods and metal oxide supports: a surface plasmon spectroscopy study. ACS Nano 9:7846–7856

    Article  CAS  Google Scholar 

  64. Liu N, Tang ML, Hentschel M, Giessen H, Alivisatos AP (2011) Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat Mater 10:631–636

    Article  CAS  Google Scholar 

  65. Seo D, Park G, Song H (2012) Plasmonic monitoring of catalytic hydrogen generation by a single nanoparticle probe. J Am Chem Soc 134:1221–1227

    Article  CAS  Google Scholar 

  66. Tittl A, Yin X, Giessen H, Tian X-D, Tian Z-Q, Kremers C, Chigrin DN, Liu N (2013) Plasmonic smart dust for probing local chemical reactions. Nano Lett 13:1816–1821

    Article  CAS  Google Scholar 

  67. Jing C, Rawson FJ, Zhou H, Shi X, Li W-H, Li D-W, Long Y-T (2014) New insights into electrocatalysis based on plasmon resonance for the real-time monitoring of catalytic events on single gold nanorods. Anal Chem 86:5513–5518

    Article  CAS  Google Scholar 

  68. Cennamo N, D’Agostino G, Dona A, Dacarro G, Pallavicini P, Pesavento M, Zeni L (2013) Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation. Sensors 13:14676–14686

    Article  Google Scholar 

  69. Sherry LJ, Jin RC, Mirkin CA, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6:2060–2065

    Article  CAS  Google Scholar 

  70. Bukasov R, Ali TA, Nordlander P, Shumaker-Parry JS (2010) Probing the plasmonic near-field of gold nanocrescent antennas. ACS Nano 4:6639–6650

    Article  CAS  Google Scholar 

  71. Bolduc OR, Masson J-F (2011) Advances in surface plasmon resonance sensing with nanoparticles and thin films: nanomaterials, surface chemistry, and hybrid plasmonic techniques. Anal Chem 83:8057–8062

    Article  CAS  Google Scholar 

  72. Chung T, Lee S-Y, Song EY, Chun H, Lee B (2011) Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11:10907–10929

    Article  CAS  Google Scholar 

  73. Lin VK, Teo SL, Marty R, Arbouet A, Girard C, Alarcon-Llado E, Liu SH, Han MY, Tripathy S, Mlayah A (2010) Dual wavelength sensing based on interacting gold nanodisk trimers. Nanotechnology 21:305501

    Article  Google Scholar 

  74. Hao F, Nordlander P, Sonnefraud Y, Dorpe PV, Maier SA (2009) Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3:643–652

    Article  CAS  Google Scholar 

  75. Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11:1657–1663

    Article  CAS  Google Scholar 

  76. Polavarapu L, Liz-Marzan LM (2013) Towards low-cost flexible substrates for nanoplasmonic sensing. Phys Chem Chem Phys 15:5288–5300

    Article  CAS  Google Scholar 

  77. Wang H, Chen D, Wei Y, Yu L, Zhang P, Zhao J (2011) A localized surface plasmon resonance light scattering-based sensing of hydroquinone via the formed silver nanoparticles in system. Spectrochim Acta A Mol Biomol Spectrosc 79:2012–2016

    Article  CAS  Google Scholar 

  78. Bingham JM, Anker JN, Kreno LE, Van Duyne RP (2010) Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J Am Chem Soc 132:17358–17359

    Article  CAS  Google Scholar 

  79. Kazuma E, Tatsuma T (2014) Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips. Nanoscale 6:2397–2405

    Article  CAS  Google Scholar 

  80. Huang D, Hu T, Chen N, Zhang W, Di J (2014) Development of silver/gold nanocages onto indium tin oxide glass as a reagentless plasmonic mercury sensor. Anal Chim Acta 825:51–56

    Article  CAS  Google Scholar 

  81. Sugawa K, Tahara H, Yamashita A, Otsuki J, Sagara T, Harumoto T, Yanagida S (2015) Refractive index susceptibility of the plasmonic palladium nanoparticle: potential as the third plasmonic sensing material. ACS Nano 9:1895–1904

    Article  CAS  Google Scholar 

  82. Szunerits S, Boukherroub R (2012) Sensing using localised surface plasmon resonance sensors. Chem Commun 48:8999–9010

    Article  CAS  Google Scholar 

  83. Feuz L, Jonsson MP, Hook F (2012) Material-selective surface chemistry for nanoplasmonic sensors: optimizing sensitivity and controlling binding to local hot spots. Nano Lett 12:873–879

    Article  CAS  Google Scholar 

  84. Chen P, Liedberg B (2014) Curvature of the localized surface plasmon resonance peak. Anal Chem 86:7399–7405

    Article  CAS  Google Scholar 

  85. Lodewijks K, Van Roy W, Borghs G, Lagae L, Van Dorpe P (2012) Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements. Nano Lett 12:1655–1659

    Article  CAS  Google Scholar 

  86. Ho FH, Wu Y-H, Ujihara M, Imae T (2012) A solution-based nano-plasmonic sensing technique by using gold nanorods. Analyst 137:2545–2548

    Article  CAS  Google Scholar 

  87. Liu Y, Zhao Y, Wang Y, Li CM (2015) Polyamine-capped gold nanorod as a localized surface Plasmon resonance probe for rapid and sensitive copper(II) ion detection. J Colloid Interface Sci 439:7–11

    Article  CAS  Google Scholar 

  88. Wang G, Chen Z, Chen L (2011) Mesoporous silica-coated gold nanorods: towards sensitive colorimetric sensing of ascorbic acid via target-induced silver overcoating. Nanoscale 3:1756–1759

    Article  CAS  Google Scholar 

  89. Ma X, Truong PL, Anh NH, Sim SJ (2015) Single gold nanoplasmonic sensor for clinical cancer diagnosis based on specific interaction between nucleic acids and protein. Biosens Bioelectron 67:59–65

    Article  CAS  Google Scholar 

  90. Ruemmele JA, Hall WP, Ruvuna LK, Van Duyne RP (2013) A localized surface plasmon resonance imaging instrument for multiplexed biosensing. Anal Chem 85:4560–4566

    Article  CAS  Google Scholar 

  91. Chen P, Chung MT, McHugh W, Nidetz R, Li Y, Fu J, Cornell TT, Shanley TP, Kurabayashi K (2015) Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays. ACS Nano 9:4173–4181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, J., Tang, B. (2018). In Situ Localized Surface Plasmon Resonance Spectroscopy for Gold and Silver Nanoparticles. In: Kumar, C. (eds) In-situ Characterization Techniques for Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56322-9_4

Download citation

Publish with us

Policies and ethics