Skip to main content

Tooth and Tooth-Supporting Structures

  • Chapter
Advances in Metallic Biomaterials

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 3))

Abstract

Tooth and tooth-supporting structures are involved in the function of mastication and articulation and are classified as enamel, dentin-pulp complex, and tooth-supporting structures. The dentin-pulp complex is sorted dentin and pulp, and the tooth-supporting structures are categorized as cementum, periodontal ligament, alveolar bone, and gingiva. Tooth consists of three different types of hard tissues, such as enamel, dentin, and cementum, and soft tissue of pulp and periodontal ligament. In clinical situation, a tooth is fundamentally made of the crown that is any part of the tooth visible in the mouth and the root that is any part of a tooth not visible in the mouth. Enamel covers the crown of a tooth and is the most highly mineralized substance in the human body, which includes the highest percentage of minerals. Cementum covers the root and is connected with alveolar bone, which surrounds and supports the tooth root by intervening with periodontal ligament. Dentin-pulp complex is surrounded by enamel and cementum. Dentin is the most voluminous mineralized tissue of the tooth and is formed by odontoblast that is part of the outer surface of the pulp. Pulp also includes vascular, lymphatic, and nervous elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ash MM, Nelson SJ (2010) Wheeler’s dental anatomy, physiology, and occlusion, 9th edn. Saunders, St. Louis

    Google Scholar 

  2. Nanci A, Bosshardt DD (2006) Structure of periodontal tissues in health and disease. Periodontol 40:11–28

    Article  Google Scholar 

  3. Baldassarri M, Margolis HC, Beniash E (2008) Compositional determinants of mechanical properties of enamel. J Dent Res 87:645–649

    Article  Google Scholar 

  4. Park S, Wang DH, Zhang D, Romberg E, Arola D (2008) Mechanical properties of human enamel as a function of age and location in the tooth. J Mater Sci Mater Med 19:2317–2324

    Article  Google Scholar 

  5. De Medeiros RC, Soares JD, De Sousa FB (2012) Natural enamel caries in polarized light microscopy: differences in histopathological features derived from a qualitative versus a quantitative approach to interpret enamel birefringence. J Microsc 246:177–189

    Article  Google Scholar 

  6. Boskey AL (2007) Mineralization of bones and teeth. Elements 3:385–391

    Article  Google Scholar 

  7. Nelson DG, Featherstone JD (1982) Preparation, analysis, and characterization of carbonated apatites. Calcif Tissue Int 34(Suppl 2):S69–S81

    Google Scholar 

  8. Uskokovic V, Khan F, Liu H, Witkowska HE, Zhu L, Li W, Habelitz S (2011) Hydrolysis of amelogenin by matrix metalloprotease-20 accelerates mineralization in vitro. Arch Oral Biol 56:1548–1559

    Article  Google Scholar 

  9. Boyde A (1997) Microstructure of enamel. Ciba Found Symp 205:18–27; discussion -31

    Google Scholar 

  10. Lacruz RS, Smith CE, Kurtz I, Hubbard MJ, Paine ML (2013) New paradigms on the transport functions of maturation-stage ameloblasts. J Dent Res 92:122–129

    Article  Google Scholar 

  11. Fang PA, Lam RS, Beniash E (2011) Relationships between dentin and enamel mineral at the dentino-enamel boundary: electron tomography and high-resolution transmission electron microscopy study. Eur J Oral Sci 119(Suppl 1):120–124

    Article  Google Scholar 

  12. Zhao J, Liu Y, Sun WB, Zhang H (2011) Amorphous calcium phosphate and its application in dentistry. Chem Cent J 5:40

    Article  Google Scholar 

  13. Wuthier RE, Rice GS, Wallace JE Jr, Weaver RL, LeGeros RZ, Eanes ED (1985) In vitro precipitation of calcium phosphate under intracellular conditions: formation of brushite from an amorphous precursor in the absence of ATP. Calcif Tissue Int 37:401–410

    Article  Google Scholar 

  14. Wang L, Nancollas GH (2008) Calcium orthophosphates: crystallization and dissolution. Chem Rev 108:4628–4669

    Article  Google Scholar 

  15. Cuisinier FJ, Steuer P, Senger B, Voegel JC, Frank RM (1992) Human amelogenesis. I: High resolution electron microscopy study of ribbon-like crystals. Calcif Tissue Int 51:259–268

    Article  Google Scholar 

  16. Moradian-Oldak J (2012) Protein-mediated enamel mineralization. Front Biosci 17:1996–2023

    Article  Google Scholar 

  17. Salama AH, Zaki AE, Eisenmann DR (1987) Cytochemical localization of Ca2 + -Mg2+ adenosine triphosphatase in rat incisor ameloblasts during enamel secretion and maturation. J Histochem Cytochem 35:471–482

    Article  Google Scholar 

  18. Moradian-Oldak J (2001) Amelogenins: assembly, processing and control of crystal morphology. Matrix Biol 20:293–305

    Article  Google Scholar 

  19. Driessens FC, Heijligers HJ, Borggreven JM, Woltgens JH (1985) Posteruptive maturation of tooth enamel studied with the electron microprobe. Caries Res 19:390–395

    Article  Google Scholar 

  20. Sabel N (2012) Enamel of primary teeth – morphological and chemical aspects. Swed Dent J Suppl 222:1–77, 2p preceding i

    Google Scholar 

  21. Daculsi G, Kerebel B (1978) High-resolution electron microscope study of human enamel crystallites: size, shape, and growth. J Ultrastruct Res 65:163–172

    Article  Google Scholar 

  22. Pashley DH (1996) Dynamics of the pulpo-dentin complex. Crit Rev Oral Biol Med 7:104–133

    Article  Google Scholar 

  23. Marshall GW Jr, Marshall SJ, Kinney JH, Balooch M (1997) The dentin substrate: structure and properties related to bonding. J Dent 25:441–458

    Article  Google Scholar 

  24. Kinney JH, Marshall SJ, Marshall GW (2003) The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. Crit Rev Oral Biol Med 14:13–29

    Article  Google Scholar 

  25. Goldberg M, Kulkarni AB, Young M, Boskey A (2011) Dentin: structure, composition and mineralization. Front Biosci 3:711–735

    Article  Google Scholar 

  26. Kinney JH, Pople JA, Marshall GW, Marshall SJ (2001) Collagen orientation and crystallite size in human dentin: a small angle X-ray scattering study. Calcif Tissue Int 69:31–37

    Article  Google Scholar 

  27. Schilke R, Lisson JA, Bauss O, Geurtsen W (2000) Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation. Arch Oral Biol 45:355–361

    Article  Google Scholar 

  28. Mjor IA, Nordahl I (1996) The density and branching of dentinal tubules in human teeth. Arch Oral Biol 41:401–412

    Article  Google Scholar 

  29. Thesleff I, Keranen S, Jernvall J (2001) Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res 15:14–18

    Article  Google Scholar 

  30. Couve E, Osorio R, Schmachtenberg O (2013) The amazing odontoblast: activity, autophagy, and aging. J Dent Res 92:765–772

    Article  Google Scholar 

  31. Kawasaki K, Weiss KM (2008) SCPP gene evolution and the dental mineralization continuum. J Dent Res 87:520–531

    Article  Google Scholar 

  32. Anderson HC (1995) Molecular biology of matrix vesicles. Clin Orthop Relat Res 314:266–280

    Google Scholar 

  33. Linde A (1985) The extracellular matrix of the dental pulp and dentin. J Dent Res 64 Spec No, 523–529

    Google Scholar 

  34. Goldberg M, Smith AJ (2004) Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 15:13–27

    Article  Google Scholar 

  35. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630

    Article  Google Scholar 

  36. Ingle JI, Barkland LK (2002) Endodomtics. BC Decker, London

    Google Scholar 

  37. Bosshardt DD, Selvig KA (1997) Dental cementum: the dynamic tissue covering of the root. Periodontol 2000(13):41–75

    Article  Google Scholar 

  38. Grzesik WJ, Narayanan AS (2002) Cementum and periodontal wound healing and regeneration. Crit Rev Oral Biol Med 13:474–484

    Article  Google Scholar 

  39. Srivicharnkul P, Kharbanda OP, Swain MV, Petocz P, Darendeliler MA (2005) Physical properties of root cementum: Part 3. Hardness and elastic modulus after application of light and heavy forces. Am J Orthod Dentofac Orthop 127:168–176; quiz 260

    Article  Google Scholar 

  40. Liu HW, Yacobi R, Savion N, Narayanan AS, Pitaru S (1997) A collagenous cementum-derived attachment protein is a marker for progenitors of the mineralized tissue-forming cell lineage of the periodontal ligament. J Bone Miner Res 12:1691–1699

    Article  Google Scholar 

  41. Hammarstrom L (1997) Enamel matrix, cementum development and regeneration. J Clin Periodontol 24:658–668

    Article  Google Scholar 

  42. Owman-Moll P, Kurol J (1998) The early reparative process of orthodontically induced root resorption in adolescents–location and type of tissue. Eur J Orthod 20:727–732

    Article  Google Scholar 

  43. Johansson AS, Svensson KG, Trulsson M (2006) Impaired masticatory behavior in subjects with reduced periodontal tissue support. J Periodontol 77:1491–1497

    Article  Google Scholar 

  44. Lekic P, McCulloch CA (1996) Periodontal ligament cell population: the central role of fibroblasts in creating a unique tissue. Anat Rec 245:327–341

    Article  Google Scholar 

  45. Seo B-M, Miura M, Gronthos S, Mark Bartold P, Batouli S, Brahim J, Young M, Gehron Robey P, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    Article  Google Scholar 

  46. Montes GS (1996) Structural biology of the fibres of the collagenous and elastic systems. Cell Biol Int 20:15–27

    Article  Google Scholar 

  47. Yajima T, Sakakura Y, Tsuruga E, Hirai T, Ikeda Y, Fujii S, Shide N (1999) Collagen-phagocytosing ability of periodontal osteoblasts at the bone surface. Arch Histol Cytol 62:17–25

    Article  Google Scholar 

  48. Chang YC, Yang SF, Lai CC, Liu JY, Hsieh YS (2002) Regulation of matrix metalloproteinase production by cytokines, pharmacological agents and periodontal pathogens in human periodontal ligament fibroblast cultures. J Periodontal Res 37:196–203

    Article  Google Scholar 

  49. Staszyk C, Gasse H (2004) Oxytalan fibres in the periodontal ligament of equine molar cheek teeth. Anat Histol Embryol 33:17–22

    Article  Google Scholar 

  50. Zhang X, Schuppan D, Becker J, Reichart P, Gelderblom HR (1993) Distribution of undulin, tenascin, and fibronectin in the human periodontal ligament and cementum: comparative immunoelectron microscopy with ultra-thin cryosections. J Histochem Cytochem 41:245–251

    Article  Google Scholar 

  51. Goldring SR (2003) Inflammatory mediators as essential elements in bone remodeling. Calcif Tissue Int 73:97–100

    Article  Google Scholar 

  52. Sodek J, McKee MD (2000) Molecular and cellular biology of alveolar bone. Periodontology 2000(24):99–126

    Article  Google Scholar 

  53. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357

    Article  Google Scholar 

  54. Raisz LG (1999) Physiology and pathophysiology of bone remodeling. Clin Chem 45:1353–1358

    Google Scholar 

  55. Lang NP, Loe H (1972) The relationship between the width of keratinized gingiva and gingival health. J Periodontol 43:623–627

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Kamakura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kamakura, S. (2015). Tooth and Tooth-Supporting Structures. In: Niinomi, M., Narushima, T., Nakai, M. (eds) Advances in Metallic Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46836-4_5

Download citation

Publish with us

Policies and ethics