Skip to main content

Omega-3 Fatty Acids Produced from Microalgae

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

The applications of Omega-3 fatty acids for human health are rapidly expanding, which necessitates exploring alternative sources to fish. Many marine microorganisms across different kingdoms exhibit the ability to store a significant oil content, however are difficult to cultivate. Out of all marine microbes, thraustochytrids are considered a good source for the production of high value compounds such as polyunsaturated fatty acids (GlossaryTerm

PUFA

s). Optimization of culture conditions will be helpful in further enhancing cellular lipid content to suit fatty acid synthesis. This chapter describes some recent advances in the development of marine microbes for fatty acid production with a special emphasis upon thraustochytrids for biotechnological applications, focussing particularly on methods to enhanced docosahexaenoic acid (GlossaryTerm

DHA

) and eicosapentaenoic acid (GlossaryTerm

EPA

) production.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AA:

arachidonic acid

ALA:

α-linolenic acid

ARA:

arachidonic acid

ASW:

artificial seawater

AfDD:

acriflavine direct detection

CAF:

chlorophyll autofluorescence

CV:

cardiovascular

DHA:

docosahexaenoic acid

DH:

dehydratase

DO:

dissolved oxygen

EPA:

eicosapentaenoic acid

NADPH:

nicotinamide adenine dinucleotide phosphate

NTG:

N-methyl- N -nitro-N-nitroso guanidine

PKS:

polyketide synthase

PUFA:

polyunsaturated fatty acid

TFA:

total fatty acid

VLC:

very long-chain

References

  1. S. Raghukumar, V. Sathepathak, S. Sharma, C. Raghukumar: Thraustochytrid and fungal component of marine detritus. 3. Field studies on decomposition of leaves of the mangrove Rhizophora apiculata, Aquat. Microb. Ecol. 9, 117–125 (1995)

    Article  Google Scholar 

  2. B.A. Watkins, Y. Li, H.E. Lippman, S. Feng: Modulatory effect of omega-3 polyunsaturated fatty acids on osteoblast function and bone metabolism, Prostaglandins Leukot. Essent. Fat. Acids 68, 387–398 (2003)

    Article  CAS  Google Scholar 

  3. M.S. Innis: Fatty acids and early human development, Early Hum. Dev. 83, 761–766 (2007)

    Article  CAS  Google Scholar 

  4. C.J. Lavie, R.V. Milani, M.R. Mehra, H.O. Ventura: Omega-3 polyunsaturated fatty acids and cardiovascular diseases, J. Am. Coll. Cardiol. 54, 585–594 (2009)

    Article  CAS  Google Scholar 

  5. C. Boudrault, R.P. Bazinet, D.W.L. Ma: Experimental models and mechanisms underlying the protective effects of n-3 polyunsaturated fatty acids in Alzheimer's disease, J. Nutr. Biochem. 20, 1–10 (2009)

    Article  CAS  Google Scholar 

  6. R. Kitz, M.A. Rose, R. Schubert, C. Beermann, A. Kaufmann, H.J. Böhles, J. Schulze, S. Zielen: Omega-3 polyunsaturated fatty acids and bronchial inflammation in grass pollen allergy after allergen challenge, Respir. Med. 104, 1793–1798 (2010)

    Article  Google Scholar 

  7. M.M. Sethom, S. Fares, N. Bouaziz, W. Melki, R. Jemaa, M. Feki, Z. Hechmi, N. Kaabachi: Polyunsaturated fatty acids deficits are associated with psychotic state and negative symptoms in patients with schizophrenia, Prostaglandins Leukot. Essent. Fat. Acids 83, 131–136 (2010)

    Article  CAS  Google Scholar 

  8. L. Knott, N.C. Avery, A.P. Hollander, J.F. Tarlton: Regulation of osteoarthritis by omega-3 (n-3) polyunsaturated fatty acids in a naturally occurring model of disease, Osteoarthr. Cartil. 19, 1150–1157 (2011)

    Article  CAS  Google Scholar 

  9. M.A. Hull: Omega-3 polyunsaturated fatty acids, Best Pract. Res. Clim. Gastroenterol. 25, 547–554 (2011)

    Article  CAS  Google Scholar 

  10. S. Samuel, B. Peskin, B. Arondekar, P. Alperin, S. Johnson, I. Blumenfeld, G. Stone, T.A. Jacobson: Estimating health and economic benefits from using prescription omega-3 fatty acids in patients with severe hypertriglyceridemia, Am. J. Cardiol. 108, 691–697 (2011)

    Article  CAS  Google Scholar 

  11. T. Huang, J. Zheng, Y. Chen, B. Yang, M.L. Wahlqvist, D. Li: High consumption of Ω-3 polyunsaturated fatty acids decrease plasma homocysteine: A meta-analysis of randomized, placebo-controlled trials, Nutreints 27, 863–867 (2011)

    CAS  Google Scholar 

  12. R.J. Deckelbaum, C. Torrejon: The omega-3 fatty acid nutritional landscape: Health benefits and sources, J. Nutr. 142, 587S–591S (2012)

    Article  CAS  Google Scholar 

  13. J.K. Kiecolt-Glaser, M.A. Belury, R. Andridge, W.B. Malarkey, B.S. Hwang, R. Glaser: Omega-3 supplementation lowers inflammation in healthy middle-aged and older adults: A randomized controlled trial, Brain Behav. Immun. 26, 988–995 (2012)

    Article  CAS  Google Scholar 

  14. C. Shanahan: The changing dynamics of the omega-3 industry, http://www.naturalproductsinsider.com/articles/2012/09/the-changing-dynamics-of-the-omega-3-industry.aspx (2012)

  15. E. Atalah, C.M.H. Cruz, M.S. Izquierdo, G. Rosenlund, M.J. Caballero, A. Valencia, L. Robaina: Two microalgae Crypthecodinium cohnii and Phaeodactylum tricornutum as alternative source of essential fatty acids in starter feeds for seabream (Sparus aurata), Aquaculture 270, 178–185 (2007)

    Article  CAS  Google Scholar 

  16. M. Venegas-Calerón, O. Sayanova, J.A. Napier: An alternative to fish oils: Metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids, Progr. Lipid Res. 49, 108–119 (2010)

    Article  CAS  Google Scholar 

  17. A.P. Simopoulos: Fatty acids. In: Omega-3 Polyunsaturated, Encyclopedia of Human Nutrition, 2nd edn., ed. by B. Caballero (Elsevier, Amsterdam 2005) pp. 205–219

    Chapter  Google Scholar 

  18. L. Sijtsma, M.E. de Swaaf: Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid, Appl. Microbiol. Biotechnol. 64, 146–153 (2004)

    Article  CAS  Google Scholar 

  19. M.H. Cheng, T.H. Walker, G.J. Hulbert, D.R. Raman: Fungal production of eicosapentaenoic and arachidonic acids from industrial waste streams and crude soybean oil, Bioresour. Technol. 67, 101–110 (1999)

    Article  CAS  Google Scholar 

  20. R. Harun, M. Singh, G.M. Forde, M.K. Danquah: Bioprocess engineering of microalgae to produce a variety of consumer products, Renew. Sust. Energy Rev. 14, 1037–1047 (2010)

    Article  CAS  Google Scholar 

  21. R.S. Rasmussen, M.T. Morrissey: Marine biotechnology for production of food ingredients. In: Advances in Food and Nutrition Research, ed. by L.T. Steve (Academic, Burlington 2007) pp. 237–292

    Google Scholar 

  22. S.D. Varfolomeev, L.A. Wasserman: Microalgae as source of biofuel, food, fodder, and medicines, Appl. Biochem. Microbiol. 47, 789–807 (2011)

    Article  CAS  Google Scholar 

  23. M.L. Colombo, P. Rise, F. Giavarini, L. De Angelis, C. Galli, C.L. Bolis: Marine macroalgae as sources of polyunsaturated fatty acids, Plant Foods Hum. Nutr. 61, 67–72 (2006)

    Article  CAS  Google Scholar 

  24. S. Hemaiswarya, R. Raja, R. Ravi Kumar, V. Ganesan, C. Anbazhagan: Microalgae: A sustainable feed source for aquaculture, World J. Microbiol. Biotechnol. 27, 1737–1746 (2011)

    Article  Google Scholar 

  25. J.-Y. Lee, C. Yoo, S.-Y. Jun, C.-Y. Ahn, H.-M. Oh: Comparison of several methods for effective lipid extraction from microalgae, Bioresour. Technol. 101, S75–S77 (2010)

    Article  CAS  Google Scholar 

  26. J.X. Kang: Omega-3: A link between global climate change and human health, Biotechnol. Adv. 29, 388–390 (2011)

    Article  CAS  Google Scholar 

  27. B. William, W. Craig, M. James: Development of a docosahexaenoic acid production technology using schizochytrium. In: Single Cell Oils, ed. by Z. Cohen, C. Ratledge (AOCS, Urbana 2005) pp. 75–96

    Google Scholar 

  28. V. Patil, T. Kallqvist, E. Olsen, G. Vogt, H.R. Gislerod: Fatty acid composition of 12 microalgae for possible use in aquaculture feed, Aquac. Int. 15, 1–9 (2007)

    Article  CAS  Google Scholar 

  29. C.M. Williams, G. Burdge: Long-chain n-3 PUFA: Plant v. marine sources, Proc. Nutr. Soc. 65, 42–50 (2006)

    Article  CAS  Google Scholar 

  30. P. Gualtieri: Morphology of photoreceptor systems in microalgae, Micron 32, 411–426 (2000)

    Article  Google Scholar 

  31. T. Matsunaga, H. Takeyama, H. Miyashita, H. Yokouchi: Marine microalgae. In: Advances in Biochemical Engineering and Biotechnology, ed. by R. Ulber, Y. Le Gal (Springer, Berlin, Heidelberg 2005) pp. 165–188

    Google Scholar 

  32. S. Varfolomeev, L. Wasserman: Microalgae as source of biofuel, food, fodder, and medicines, Appl. Biochem. Microbiol. 47, 789–807 (2011)

    Article  CAS  Google Scholar 

  33. M. Xavier: Microalgae and biofuels: A promising partnership?, Trends Biotechnol. 29, 542–549 (2011)

    Article  CAS  Google Scholar 

  34. P. Spolaore, C. Joannis-Cassan, E. Duran, A. Isambert: Commercial applications of microalgae, J. Biosci. Bioeng. 101, 87–96 (2006)

    Article  CAS  Google Scholar 

  35. P. Stolz, B. Obermayer: Manufacturing microalgae for skin care, Cosmet. Toilet. 120, 99–106 (2005)

    Google Scholar 

  36. I. Rawat, R. Ranjith Kumar, T. Mutanda, F. Bux: Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production, Appl. Energ. 88, 3411–3424 (2011)

    Article  CAS  Google Scholar 

  37. E.J. Olguin: Phycoremediation: Key issues for cost-effective nutrient removal processes, Biotechnol. Adv. 22, 81–91 (2003)

    Article  CAS  Google Scholar 

  38. S. Chinnasamy, A. Bhatnagar, R.W. Hunt, K.C. Das: Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications, Bioresour. Technol. 101, 3097–3105 (2010)

    Article  CAS  Google Scholar 

  39. L. Wang, M. Min, Y. Li, P. Chen, Y. Chen, Y. Liu, Y. Wang, R. Ruan: Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant, Appl. Biochem. Biotechnol. 162, 1174–1186 (2010)

    Article  CAS  Google Scholar 

  40. K. Yamaguchi: Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: A review, J. Appl. Phycol. 8, 487–502 (1996)

    Article  Google Scholar 

  41. A. Muller-Feuga: The role of microalgae in aquaculture: Situation and trends, J. Appl. Phycol. 12, 527–534 (2000)

    Article  Google Scholar 

  42. M.A. Borowitzka: Microalgae for aquaculture: Opportunities and constraints, J. Appl. Phycol. 9, 393–401 (1997)

    Article  Google Scholar 

  43. F.B. Metting: Biodiversity and application of microalgae, J. Ind. Microbiol. Biotechnol. 17, 477–489 (1996)

    Article  CAS  Google Scholar 

  44. R.T. Lorenz, G.R. Cysewski: Commercial potential for Haematococcus microalgae as a natural source of astaxanthin, Trends Biotechnol. 18, 160–167 (2000)

    Article  CAS  Google Scholar 

  45. M.A. Borowitzka: Commercial production of microalgae: Ponds, tanks, tubes and fermenters, J. Biotechnol. 70, 313–321 (1999)

    Article  CAS  Google Scholar 

  46. D. Soletto, L. Binaghi, A. Lodi, J.C.M. Carvalho, A. Converti: Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources, Aquaculture 243, 217–224 (2005)

    Article  CAS  Google Scholar 

  47. G. Pinto, A. Pollio, L. Previtera, M. Stanzione, F. Temussi: Removal of low molecular weight phenols from olive oil mill wastewater using microalgae, Biotechnol. Lett. 25, 1657–1659 (2003)

    Article  CAS  Google Scholar 

  48. S.A.C. Lima, P.M.L. Castro, R. Morais: Biodegradation of nitrophenol by microalgae, J. Appl. Phycol. 15, 137–142 (2003)

    Article  CAS  Google Scholar 

  49. M. Kulkarni, A. Chaudhari: Biodegradation of p-nitrophenol by Pseudomonas putida, Bioresour. Technol. 97, 982–988 (2006)

    Article  CAS  Google Scholar 

  50. R. Bermejo Román, J.M. Alvárez-Pez, F.G. Acién Fernández, E. Molina Grima: Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum, J. Biotechnol. 93, 73–85 (2002)

    Article  Google Scholar 

  51. P.J. Viskari, C.L. Colyer: Rapid extraction of phycobiliproteins from cultured cyanobacteria samples, Anal. Biochem. 319, 263–271 (2003)

    Article  CAS  Google Scholar 

  52. J.A. Kralovec, K.L. Metera, J.R. Kumar, L.V. Watson, G.S. Girouard, Y. Guan, R.I. Carr, C.J. Barrow, H.S. Ewart: Immunostimulatory principles from Chlorella pyrenoidosa – Part 1: Isolation and biological assessment in vitro, Phytomedicine 14, 57–64 (2007)

    Article  CAS  Google Scholar 

  53. C. Ratledge: Fatty acid biosynthesis in microorganisms being used for single cell oil production, Biochimie 86, 807–815 (2004)

    Article  CAS  Google Scholar 

  54. O.P. Ward, A. Singh: Omega-3/6 fatty acids: Alternative sources of production, Process Biochem. 40, 3627–3652 (2005)

    Article  CAS  Google Scholar 

  55. Y. Jiang, F. Chen, S.Z. Liang: Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii, Process Biochem. 34, 633–637 (1999)

    Article  CAS  Google Scholar 

  56. L. Brennan, P. Owende: Biofuels from microalgae – A review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sust. Energy Rev. 14, 557–577 (2010)

    Article  CAS  Google Scholar 

  57. T.M. Mata, A.A. Martins, N.S. Caetano: Microalgae for biodiesel production and other applications: A review, Renew. Sust. Energy Rev. 14, 217–232 (2010)

    Article  CAS  Google Scholar 

  58. J. Masojídek, G. Torzillo: Mass cultivation of freshwater microalgae. In: Encyclopedia of Ecology, (Academic, Oxford 2008) pp. 2226–2235

    Chapter  Google Scholar 

  59. F. Hempel, A.S. Bozarth, N. Lindenkamp, A. Klingl, S. Zauner, U. Linne, A. Steinbuechel, U.G. Maier: Microalgae as bioreactors for bioplastic production, Microb. Cell Fact. 10, 81 (2011)

    Article  CAS  Google Scholar 

  60. O. Perez-Garcia: Heterotrophic cultures of microalgae: Metabolism and potential products, Water Res. 45, 11–36 (2011)

    Article  CAS  Google Scholar 

  61. Y.-C. Chen: The biomass and total lipid content and composition of twelve species of marine diatoms cultured under various environments, Food Chem. 131, 211–219 (2012)

    Article  CAS  Google Scholar 

  62. Y. Zheng, Z. Chi, B. Lucker, S. Chen: Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production, Bioresour. Technol. 103, 484–488 (2012)

    Article  CAS  Google Scholar 

  63. Z. Li, H. Yuan, J. Yang, B. Li: Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341, Bioresour. Technol. 102, 9128–9134 (2011)

    Article  CAS  Google Scholar 

  64. T.T.Y. Doan, B. Sivaloganathan, J.P. Obbard: Screening of marine microalgae for biodiesel feedstock, Biomass Bioenerg. 35, 2534–2544 (2011)

    Article  CAS  Google Scholar 

  65. J.L. Harwood, I.A. Guschina: The versatility of algae and their lipid metabolism, Biochimie 91, 679–684 (2009)

    Article  CAS  Google Scholar 

  66. A. Gupta, C.J. Barrow, M. Puri: Omega-3 biotechnology: Thraustochytrids as a novel source of omega-3 oils, Biotechnol. Adv. 30, 1733–1745 (2012)

    Article  CAS  Google Scholar 

  67. S. Raghukumar: Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids), Eur. J. Protistol. 38, 127–145 (2002)

    Article  Google Scholar 

  68. A. Jakobsen, I. Aasen, K. Josefsen, A. Strøm: Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: Effects of N and P starvation and O limitation, Appl. Microbiol. Biotechnol. 80, 297–306 (2008)

    Article  CAS  Google Scholar 

  69. H. Kimura, T. Fukuba, T. Naganuma: Biomass of thraustochytrid prototists in coastal water, Mar. Ecol. Prog. Ser. 189, 27–33 (1999)

    Article  CAS  Google Scholar 

  70. A.D. Uttaro: Biosynthesis of polyunsaturated fatty acids in lower eukaryotes, IUBMB Life 58, 563–571 (2006)

    Article  CAS  Google Scholar 

  71. M. Certik, S. Shimizu: Biosynthesis and regulation of microbial polyunsaturated fatty acid production, J. Biosci. Bioeng. 87, 1–14 (1999)

    Article  CAS  Google Scholar 

  72. S.L. Pereira, A.E. Leonard, Y.-S. Huang, L.-T. Chuang, P. Mukerji: Identification of two novel microalgal enzymes involved in the conversion of the omega3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid, Biochem. J. 384, 357–366 (2004)

    Article  CAS  Google Scholar 

  73. J. Lippmeier, K. Crawford, C. Owen, A. Rivas, J. Metz, K. Apt: Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium. sp, Lipids 44, 621–630 (2009)

    Article  CAS  Google Scholar 

  74. J.G. Wallis, J.L. Watts, J. Browse: Polyunsaturated fatty acid synthesis: What will they think of next?, Trends Biochem. Sci. 27, 467–473 (2002)

    Article  CAS  Google Scholar 

  75. N. Nagano, K. Sakaguchi, Y. Taoka, Y. Okita, D. Honda, M. Ito, M. Hayashi: Detection of genes involved in fatty acid elongation and desaturation in thraustochytrid marine eukaryotes, J. Oleo Sci. 60, 475–481 (2011)

    Article  CAS  Google Scholar 

  76. A. Makri, S. Bellou, M. Birkou, K. Papatrehas, N.P. Dolapsakis, D. Bokas, S. Papanikolaou, G. Aggelis: Lipid synthesized by micro-algae grown in laboratory- and industrial-scale bioreactors, Eng. Life Sci. 11, 52–58 (2011)

    Article  CAS  Google Scholar 

  77. Z.-Y. Wen, F. Chen: Heterotrophic production of eicosapentaenoic acid by microalgae, Biotechnol. Adv. 21, 273–294 (2003)

    Article  CAS  Google Scholar 

  78. S.M. Renaud, L.V. Thinh, D.L. Parry: The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture, Aquaculture 170, 147–159 (1999)

    Article  CAS  Google Scholar 

  79. M.P. Mansour, D.M.F. Frampton, P.D. Nichols, J.K. Volkman, S.I. Blackburn: Lipid and fatty acid yield of nine stationary-phase microalgae: Applications and unusual C-24-C-28 polyunsaturated fatty acids, J. Appl. Phycol. 17, 287–300 (2005)

    Article  CAS  Google Scholar 

  80. E. Morita, Y. Kumon, T. Nakahara, S. Kagiwada, T. Noguchi: Docosahexaenoic acid production and lipid-body formation in Schizochytrium limacinum SR21, Mar. Biotechnol. 8, 319–327 (2006)

    Article  CAS  Google Scholar 

  81. M.K.M. Wong, C.K.M. Tsui, D.W.T. Au, L.L.P. Vrijmoed: Docosahexaenoic acid production and ultrastructure of the thraustochytrid Aurantiochytrium mangrovei MP2 under high glucose concentrations, Mycoscience 49, 266–270 (2008)

    Article  CAS  Google Scholar 

  82. S.D. Scott, R.E. Armenta, K.T. Berryman, A.W. Norman: Use of raw glycerol to produce oil rich in polyunsaturated fatty acids by a thraustochytrid, Enzyme Microb. Technol. 48, 267–272 (2011)

    Article  CAS  Google Scholar 

  83. S.H. Oh, J.G. Han, Y. Kim, J.H. Ha, S.S. Kim, M.H. Jeong, H.S. Jeong, N.Y. Kim, J.S. Cho, W.B. Yoon, S.Y. Lee, D.H. Kang, H.Y. Lee: Lipid production in Porphyridium cruentum grown under different culture conditions, J. Biosci. Bioeng. 108, 429–434 (2009)

    Article  CAS  Google Scholar 

  84. F. Guihéneuf, V. Mimouni, L. Ulmann, G. Tremblin: Combined effects of irradiance level and carbon source on fatty acid and lipid class composition in the microalga Pavlova lutheri commonly used in mariculture, J. Exp. Mar. Biol. Ecol. 369, 136–143 (2009)

    Article  CAS  Google Scholar 

  85. M. Harel, W. Koven, I. Lein, Y. Bar, P. Behrens, J. Stubblefield, Y. Zohar, A.R. Place: Advanced DHA, EPA and ArA enrichment materials for marine aquaculture using single cell heterotrophs, Aquaculture 213, 347–362 (2002)

    Article  CAS  Google Scholar 

  86. K.W. Fan, F. Chen: Production of high-value products by marine microalgae thraustochytrids. In: Bioprocessing for Value-Added Products from Renewable Resources, ed. by Y. Shang-Tian (Elsevier, Amsterdam 2007) pp. 293–323

    Chapter  Google Scholar 

  87. P.K. Bajpai, P. Bajpai, O.P. Ward: Optimization of production of docosahexaenoic acid (DHA) by Thraustochytrium aureum ATCC 34304, J. Am. Oil Chem. Soc. 68, 509–514 (1991)

    Article  CAS  Google Scholar 

  88. Z.Y. Li, O.P. Ward: Production of DHA by Thraustochytrium roseum, J. Ind. Microbiol. Biotechnol. 13, 238–241 (1994)

    CAS  Google Scholar 

  89. T. Yamasaki, T. Aki, M. Shinozaki, M. Taguchi, S. Kawamoto, K. Ono: Utilization of Shochu distillery wastewater for production of polyunsaturated fatty acids and xanthophylls using thraustochytrid, J. Biosci. Bioeng. 102, 323–327 (2006)

    Article  CAS  Google Scholar 

  90. Z. Chi, D. Pyle, W. Zhiyou, C. Frear, S. Chen: A laboratory study of producing docosahexaenoic acid from biodiesel-waste by microalgae fermentation, Process Biochem. 42, 1537–1545 (2007)

    Article  CAS  Google Scholar 

  91. P. Unagul, C. Assantachai, S. Phadungruengluij, M. Suphantharika, M. Tanticharoen, C. Verduyn: Coconut water as a medium additive for the production of docosahexaenoic acid (C$22:6$ n3) by Schizochytrium mangrovei Sk-02, Bioresour. Technol. 98, 281–287 (2007)

    Article  CAS  Google Scholar 

  92. D.J. Pyle, R.A. Garcia, Z. Wen: Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: Effects of impurities on DHA production and algal biomass composition, J. Agric. Food Chem. 56, 3933–3939 (2008)

    Article  CAS  Google Scholar 

  93. L. Zhu, X. Zhang, X. Ren, Q. Zhu: Effects of culture conditions on growth and docosahexaenoic acid production from Schizochytrium limacinum, J. Ocean Univ. China Engl. Ed. 7, 83–88 (2008)

    Article  CAS  Google Scholar 

  94. B. Quilodran, I. Hinzpeter, A. Quiroz, C. Shene: Evaluation of liquid residues from beer and potato processing for the production of docosahexaenoic acid (C22:6n-3, DHA) by native thraustochytrid strains, World J. Microbiol. Biotechnol. 25, 2121–2128 (2009)

    Article  CAS  Google Scholar 

  95. Y. Liang, N. Sarkany, Y. Cui, J. Yesuf, J. Trushenki, J.W. Blackburn: Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21, Bioresour. Technol. 101, 3623–3627 (2010)

    Article  CAS  Google Scholar 

  96. S. Ethier, K. Woisard, D. Vaughan, Z. Wen: Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid, Bioresour. Technol. 102, 88–93 (2011)

    Article  CAS  Google Scholar 

  97. W.-K. Hong, C. Kim, D. Rairakhwada, S. Kim, B.-K. Hur, A. Kondo, J.-W. Seo: Growth of the oleaginous microalga Aurantiochytrium sp. KRS101 on cellulosic biomass and the production of lipids containing high levels of docosahexaenoic acid, Bioprocess Biosyst. Eng. 35, 129–133 (2012)

    Article  CAS  Google Scholar 

  98. B.-G. Ryu, K. Kim, J. Kim, J.-I. Han, J.-W. Yang: Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp., KRS101, Bioresour. Technol. 129, 351–359 (2013)

    Article  CAS  Google Scholar 

  99. A. Mendes, P. Guerra, V. Madeira, F. Ruano, T. da Lopes Silva, A. Reis: Study of docosahexaenoic acid production by the heterotrophic microalga Crypthecodinium cohnii, CCMP 316 using carob pulp as a promising carbon source, World J. Microbiol. Biotechnol. 23, 1209–1215 (2007)

    Article  CAS  Google Scholar 

  100. S. Goldstein: Studies of a new species of Thraustochytrium that displays light stimulated growth, Mycologia 55, 799–811 (1963)

    Article  CAS  Google Scholar 

  101. A.M. Burja, H. Radianingtyas, A. Windust, C.J. Barrow: Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: Screening of strains and optimization of omega-3 production, Appl. Microbiol. Biotechnol. 72, 1161–1169 (2006)

    Article  CAS  Google Scholar 

  102. T. Yaguchi, S. Tanaka, T. Yokochi, T. Nakahara, T. Higashihara: Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21, J. Am. Oil Chem. Soc. 74, 1431–1434 (1997)

    Article  CAS  Google Scholar 

  103. T. Yokochi, D. Honda, T. Higashihara, T. Nakahara: Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21, Appl. Microbiol. Biotechnol. 49, 72–76 (1998)

    Article  CAS  Google Scholar 

  104. L.-J. Ren, H. Huang, A.-H. Xiao, M. Lian, L.-J. Jin, X.-J. Ji: Enhanced docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp. HX-308, Bioprocess Biosyst. Eng. 32, 837–843 (2009)

    Article  CAS  Google Scholar 

  105. Y. Taoka, N. Nagano, Y. Okita, H. Izumida, S. Sugimoto, M. Hayashi: Effect of Tween 80 on the growth, lipid accumulation and fatty acid composition of Thraustochytrium aureum ATCC 34304, J. Biosci. Bioeng. 111, 420–424 (2011)

    Article  CAS  Google Scholar 

  106. T. Aki, K. Hachida, M. Yoshinaga, Y. Katai, T. Yamasaki, S. Kawamoto, T. Kakizono, T. Maoka, S. Shigeta, O. Suzuki, K. Ono: Thraustochytrid as a potential source of carotenoids, J. Am. Oil Chem. Soc. 80, 789–794 (2003)

    Article  CAS  Google Scholar 

  107. M.L. Carmona, T. Naganuma, Y. Yamaoka: Identification by HPLC-MS of carotenoids of the Thraustochytrium CHN-1 strain isolated from the Seto Inland Sea, Biosci. Biotechnol. Biochem. 67, 884–888 (2003)

    Article  CAS  Google Scholar 

  108. R.E. Armenta, A. Burja, H. Radianingtyas, C.J. Barrow: Critical assessment of various techniques for the extraction of carotenoids and co-enzyme Q10 from the thraustochytrid strain ONC-T18, J. Agric. Food Chem. 54, 9752–9758 (2006)

    Article  CAS  Google Scholar 

  109. W. Chatdumrong, Yongmanitchai Wichien, Limtong Savitree, W. Worawattanamateekul: Optimization of docosahexaenoic acid (DHA) production and improvement of astaxanthin content in a mutant Schizochytrium limacinum isolated from mangrove forest in Thailand, Nature Sci. 41, 324–334 (2007)

    CAS  Google Scholar 

  110. Z. Perveen, H. Ando, A. Ueno, Y. Ito, Y. Yamamoto, Y. Yamada, T. Takagi, T. Kaneko, K. Kogame, H. Okuyama: Isolation and characterization of a novel thraustochytrid-like microorganism that efficiently produces docosahexaenoic acid, Biotechnol. Lett. 28, 197–202 (2006)

    Article  CAS  Google Scholar 

  111. Y. Zeng, X.-J. Ji, M. Lian, L.-J. Ren, L.-J. Jin, P.-K. Ouyang, H. Huang: Development of a temperature shift strategy for efficient docosahexaenoic acid production by a marine fungoid protist, Schizochytrium sp. HX-308, Appl. Biochem. Biotechnol. 164, 249–255 (2011)

    Article  CAS  Google Scholar 

  112. J. Fang, M.J. Barcelona, Y. Nogi, C. Kato: Biochemical implications and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the marianas trench at 11,000 m, Deep-Sea Res. I 47, 1173–1182 (2000)

    Article  CAS  Google Scholar 

  113. J. Huang, T. Aki, T. Yokochi, T. Nakahara, D. Honda, S. Kawamoto, S. Shigeta, K. Ono, O. Suzuki: Grouping newly isolate docosahexaenoic acid-producing thraustochytrids based on their polyunsaturated fatty acid profiles and comparative analysis of 18S rRNA genes., Mar. Biotechnol. 5, 450–457 (2003)

    Article  CAS  Google Scholar 

  114. Y. Kumon, T. Yokochi, T. Nakahara: High yield of long-chain polyunsaturated fatty acids by labyrinthulids on soybean lecithin-dispersed agar medium, Appl. Microbiol. Biotechnol. 69, 253–258 (2005)

    Article  CAS  Google Scholar 

  115. E. Ganuza, A. Anderson, C. Ratledge: High-cell-density cultivation of Schizochytrium sp. in an ammonium/pH-auxostat fed-batch system, Biotechnol. Lett. 30, 1559–1564 (2008)

    Article  CAS  Google Scholar 

  116. D.D.R.B. Bailey, J.M. Hansen, P.J. Mirrasoul, C.M. Ruecker, I.I.I. Veeder, T. George, T. Kaneko, W.R. Barclay: Enhanced production of lipids containing polyunsaturated fatty acids by very high density cultures of eukaryotic microbes in fermentors, U.S. Patent 660790032 (2003)

    Google Scholar 

  117. P.P. Zhou, M.B. Lu, W. Li, L.J. Yu: Microbial production of docosahexaenoic acid by a low temperature-adaptive strain Thraustochytriidae sp. Z105: Screening and optimization, J. Basic Microbiol. 50, 380–387 (2010)

    Article  CAS  Google Scholar 

  118. L. Qu, X.J. Ji, L.J. Ren, Z.K. Nie, Y. Feng, W.J. Wu, P.K. Ouyang, H. Huang: Enhancement of docosahexaenoic acid production by Schizochytrium sp. using a two-stage oxygen supply control strategy based on oxygen transfer coefficient, Lett. Appl. Microbiol. 52, 22–27 (2011)

    Article  CAS  Google Scholar 

  119. S.T. Wu, L.P. Lin: Application of response surface methodology to optimise DHA production by Schizochytrium sp. SR31, J. Food Chem. 27, 127–139 (2003)

    CAS  Google Scholar 

  120. S.J. Kalil, F. Maugeri, M.I. Rodrigues: Response surface analysis and simulation as a tool for bioprocess design and optimization, Process Biochem. 35, 539–550 (2000)

    Article  CAS  Google Scholar 

  121. T. Nakahara, T. Yokochi, T. Higashihara, S. Tanaka, T. Yaguchi, D. Honda: Production of docosahexaenoic and docosapentaenoic acids by Schizochytrium sp. isolated from Yap Islands, J. Am. Oil Chem. Soc. 73, 1421–1426 (1996)

    Article  CAS  Google Scholar 

  122. Z. Chi, Y. Liu, C. Frear, S. Chen: Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level, Appl. Microbiol. Biotechnol. 81, 1141–1148 (2009)

    Article  CAS  Google Scholar 

  123. W.-K. Hong, D. Rairakhwada, P.-S. Seo, S.-Y. Park, B.-K. Hur, C. Kim, J.-W. Seo: Production of lipids containing high levels of docosahexaenoic acid by a newly isolated microalga, Aurantiochytrium sp. KRS101, Appl. Biochem. Biotechnol. 164, 1468–1480 (2011)

    Article  CAS  Google Scholar 

  124. E. Ganuza, M. Izquierdo: Lipid accumulation in Schizochytrium G13/2S produced in continuous culture, Appl. Microbiol. Biotechnol. 76, 985–990 (2007)

    Article  CAS  Google Scholar 

  125. K. Kim, E. Jung Kim, B.-G. Ryu, S. Park, Y.-E. Choi, J.-W. Yang: A novel fed-batch process based on the biology of Aurantiochytrium sp. KRS101 for the production of biodiesel and docosahexaenoic acid, Bioresour. Technol. 135, 269–274 (2013)

    Article  CAS  Google Scholar 

  126. T.Y. Huang, W.C. Lu, I.M. Chu: A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C$22:6$ proportions in total fatty acid, Bioresour. Technol. 123, 8–14 (2012)

    Article  CAS  Google Scholar 

  127. P.K. Zuñiga, F.A. Ciobanu, O.M. Nuñeza, K.D. Stark: The use of direct transesterification methods and autoclaving for determining fatty acid yields from dried Philippine thraustochytrids, a potential source of docosahexaenoic acid, J. Funct. Foods 4, 915–923 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munish Puri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Puri, M., Thyagarajan, T., Gupta, A., Barrow, C.J. (2015). Omega-3 Fatty Acids Produced from Microalgae. In: Kim, SK. (eds) Springer Handbook of Marine Biotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53971-8_45

Download citation

Publish with us

Policies and ethics