Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Advances in Cryptology – EUROCRYPT 2011
  3. Conference paper

Improved Generic Algorithms for Hard Knapsacks

  • Conference paper
  • pp 364–385
  • Cite this conference paper
Advances in Cryptology – EUROCRYPT 2011 (EUROCRYPT 2011)
Improved Generic Algorithms for Hard Knapsacks
  • Anja Becker17,
  • Jean-Sébastien Coron19 &
  • Antoine Joux17,18 

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6632))

Included in the following conference series:

  • Annual International Conference on the Theory and Applications of Cryptographic Techniques
  • 5526 Accesses

  • 66 Citations

  • 6 Altmetric

Abstract

At Eurocrypt 2010, Howgrave-Graham and Joux described an algorithm for solving hard knapsacks of density close to 1 in time \({\mathcal{\tilde O}}(2^{0.337n})\) and memory \({\mathcal{\tilde O}}(2^{0.256n})\), thereby improving a 30-year old algorithm by Shamir and Schroeppel. In this paper we extend the Howgrave-Graham–Joux technique to get an algorithm with running time down to \({\mathcal{\tilde O}}(2^{0.291n})\). An implementation shows the practicability of the technique. Another challenge is to reduce the memory requirement. We describe a constant memory algorithm based on cycle finding with running time \({\mathcal{\tilde O}}(2^{0.72n})\); we also show a time-memory tradeoff.

Download to read the full chapter text

Chapter PDF

Similar content being viewed by others

Memory-Efficient Algorithms for Finding Needles in Haystacks

Chapter © 2016

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications

Article 21 August 2018

Graph-Theoretic Algorithms for the Alternating Trilinear Form Equivalence Problem

Chapter © 2023

References

  1. Ajtai, M.: The shortest vector problem in \(\mbox{L}_2\) is NP-hard for randomized reductions (extended abstract). In: STOC 1998, pp. 10–19 (1998)

    Google Scholar 

  2. Becker, A., Coron, J.-S., Joux, A.: Improved generic algorithms for hard knapsacks. Eprint archive (2011)

    Google Scholar 

  3. Coster, M.J., Joux, A., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C.-P., Stern, J.: Improved low-density subset sum algorithms. Computational Complexity 2, 111–128 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  5. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Knuth, D.E.: The Art of Computer Programming, 2nd edn. Seminumerical Algorithms, vol. II. Addison-Wesley, Reading (1981)

    MATH  Google Scholar 

  7. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. J. ACM 32(1), 229–246 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 515–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. May, A., Meurer, A.: Personal communication

    Google Scholar 

  10. Merkle, R.C., Hellman, M.E.: Hiding information and signatures in trapdoor knapsacks. IEEE Transactions on Information Theory 24, 525–530 (1978)

    Article  Google Scholar 

  11. Nguyen, P.Q., Shparlinski, I.E., Stern, J.: Distribution of modular sums and the security of the server aided exponentiation. In: Progress in Computer Science and Applied Logic, Final Proceedings of Cryptography and Computational Number Theory Workshop, Singapore, vol. 20, pp. 331–224 (2001)

    Google Scholar 

  12. Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci. 53, 201–224 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain NP-complete problems. SIAM J. Comput. 10(3), 456–464 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shamir, A.: A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem. In: CRYPTO 1982, pp. 279–288 (1982)

    Google Scholar 

  15. van Oorschot, P.C., Wiener, M.J.: Improving implementable meet-in-the-middle attacks by orders of magnitude. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 229–236. Springer, Heidelberg (1996)

    Google Scholar 

  16. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. University of Versailles, Saint-Quentin-en-Yvelines, France

    Anja Becker & Antoine Joux

  2. DGA, USA

    Antoine Joux

  3. University of Luxembourg, Luxembourg

    Jean-Sébastien Coron

Authors
  1. Anja Becker
    View author publications

    Search author on:PubMed Google Scholar

  2. Jean-Sébastien Coron
    View author publications

    Search author on:PubMed Google Scholar

  3. Antoine Joux
    View author publications

    Search author on:PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Information Security Group (ISG), University of London, Royal Holloway, TW20 0EX, Egham, Surrey, UK

    Kenneth G. Paterson

Rights and permissions

Reprints and permissions

Copyright information

© 2011 International Association for Cryptologic Research

About this paper

Cite this paper

Becker, A., Coron, JS., Joux, A. (2011). Improved Generic Algorithms for Hard Knapsacks. In: Paterson, K.G. (eds) Advances in Cryptology – EUROCRYPT 2011. EUROCRYPT 2011. Lecture Notes in Computer Science, vol 6632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20465-4_21

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-20465-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20464-7

  • Online ISBN: 978-3-642-20465-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

216.73.216.234

Not affiliated

Springer Nature

© 2025 Springer Nature