Skip to main content

Phylogeny Inference Using a Multi-objective Evolutionary Algorithm with Indirect Representation

  • Conference paper
Book cover Simulated Evolution and Learning (SEAL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5361))

Included in the following conference series:

  • 1445 Accesses

Abstract

The inference of phylogenetic trees is one of the most important tasks in computational biology. In this paper, we propose an extension to multi-objective evolutionary algorithms to address this problem. Here, we adopt an enhanced indirect encoding for a tree using the corresponding Prüfer code represented in Newick format. The algorithm generates a range of non-dominated trees given alternative fitness measures such as statistical likelihood and maximum parsimony. A key feature of this approach is the preservation of the evolutionary hierarchy between species. Preliminary experimental results indicate that our model is capable of generating a set of optimized phylogenetic trees for given species data and the results are comparable with other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldauf, S.L.: Phylogeny for the faint of heart: A tutorial. Trends in Genetics 19(6), 345–351 (2003)

    Article  Google Scholar 

  2. Felsenstein, J.: PHYLIP – Phylogeny Inference Package (2000), http://evolution.genetics.washington.edu/phylip.html

  3. Congdon, C.B., Septor, K.J.: Phylogenetic trees Using Evolutionary Search: Initial Progress in Extending Gaphyl to Work with Genetic Data. In: The 2003 Congress on Evolutionary Computation (CEC 2003), vol. 1, pp. 320–326 (December 2003)

    Google Scholar 

  4. Cancino, W., Delbem, A.C.B.: A Multi-Objective Evolutionary Approach for Phylogenetic Inference. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 428–442. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Cotta, C., Moscato, P.: Inferring phylogenetic trees using evolutionary algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 720–729. Springer, Heidelberg (2002)

    Google Scholar 

  6. Gottlieb, J., Julstrom, B.A., Raidl, G.R., Rothlauf, F.: Prüfer Numbers: A Poor Representation of Spanning Trees for Evolutionary Search. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 343–350. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  7. Gascuel, O.: BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Molecular Biology and Evolution 14(7), 685–695 (1997)

    Article  Google Scholar 

  8. Reijmers, T.H., Wehrens, R., Buydens, L.M.C.: Quality Criteria of Genetic Algorithms for Construction of Phylogenetic Trees. Journal of Computational Chemistry 20(8), 867–876 (1999)

    Article  Google Scholar 

  9. Gen, M., Li, Y.: Spanning tree-based genetic algorithm for the bicriteria fixedcharge transportation problem. In: Proceedings of the 1999 Congress on Evolutionary Computation (CEC 1999), Washington, DC, USA, vol. 3, p. 2271 (1999)

    Google Scholar 

  10. Handl, J., Kell, D.B., Knowles, J.: Multiobjective Optimization in Bioinformatics and Computational Biology. IEEE/ACM Transaction on Computational Biology and Bioinformatics 4(2), 279–292 (2007)

    Article  Google Scholar 

  11. Deb, K., Agarwal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. KanGAL report 2000001, Indian Institute of Technology, Kanpur, India (2000)

    Google Scholar 

  12. Zelwer, M., Daubin, V.: Detecting phylogenetic incongruence using BIONJ: an improvement of the ILD test. Molecular Phylogenetics and Evolution 33(3), 687–693 (2004)

    Article  Google Scholar 

  13. Poladian, L., Jermiin, L.S.: Multi-objective evolutionary algorithms and phylogentic inference with multiple data sets. Soft Computing 10, 359–368 (2006)

    Article  Google Scholar 

  14. Huelsenbeck, J.P., Ronquist, F.: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8), 754–755 (2001)

    Article  Google Scholar 

  15. Saitou, N., Nei, M.: The Neighbor-Joining Method: A New Method for reconstructing Phylogenetic Trees. Molecular Biology and Evolution 4(4), 406–425 (1987)

    Google Scholar 

  16. Takezaki, N., Nei, M.: Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144(1), 389–399 (1996)

    Google Scholar 

  17. Swofford, D., Olsen, G., Waddell, P., Hillis, D.: Phylogeny Reconstruction. In: Molecular Systematics, 3rd edn., pp. 407–514. Sinauer (1996)

    Google Scholar 

  18. Lewis, P.O.: A Genetic Algorithm for Maximum-Likelihood Phylogeny Inference Using Nucleotide Data. Molecular Biology and Evolution 15(3), 277–283 (1998)

    Article  Google Scholar 

  19. Fitch, W.: Toward Difining the Course of Evolution: Minimum Change for a Specific Tree Topology. Systemetic Zoology 20(4), 406–416 (1972)

    Article  Google Scholar 

  20. Felsenstein, J.: Evolutionary Trees from DNA Sequences: A Maximum Likelihood Approach. Journal of Molecular Evolution 17, 368–376 (1981)

    Article  Google Scholar 

  21. Cole, J., Chai, B., Farris, R., Wang, K.S., McGarrell, D., Garrity, G., Tiedje, J.: The Ribosomal Database Project (RDP-II): Sequences and Tools for High-throughput rRNA Analysis. Nucleic Acids Research 33, D294–D296 (2005)

    Article  Google Scholar 

  22. Ingman, M., Gyllensten, U.: mtDB: Human Mitochondrial Genome Database, a Resource for Population Genetics and Medical Sciences. Nucleic Acids Research 34, D749– D751 (2006)

    Article  Google Scholar 

  23. Felsenstein, J.: DNAPARS – DNA Parsimony Program (1996), http://cmgm.stanford.edu/phylip/dnapars.html

  24. Felsenstein, J.: DNAML – DNA Maximum Likelihood program (1993), http://cmgm.stanford.edu/phylip/dnaml.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hassan, M.R., Hossain, M.M., Karmakar, C.K., Kirley, M. (2008). Phylogeny Inference Using a Multi-objective Evolutionary Algorithm with Indirect Representation. In: Li, X., et al. Simulated Evolution and Learning. SEAL 2008. Lecture Notes in Computer Science, vol 5361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89694-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89694-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89693-7

  • Online ISBN: 978-3-540-89694-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics