Skip to main content

A Review of the Role of Subduction Dynamics for Regional and Global Plate Motions

  • Conference paper

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

Subduction of oceanic lithosphere and deep slabs control several aspects of plate tectonics. We review models of subduction dynamics that have been studied over the last decade by means of numerical and analog experiments. Regional models indicate that trench rollback, trench curvature, and back-arc deformation may be explained by fl uid slabs that are ̃250–500 times stiffer than the upper mantle. Slab width and, more importantly, rheology determine the role of viscous bending, poloidal-sinking fl ow and toroidal-rollback stirring, and interactions of the slab with the higher viscosity lower mantle. Several of these contributions can be represented by a local sinking veloCity. Back-arc deformation may then result from an imbalance if larger-scale plate forcing leads to deviations of the convergence rate from the local equilibrium. Lateral viscosity variations (LVVs) are also key for understanding plate driving forces. The realism of global circulation computations has advanced and such models with weak zones and other LVVs have lead to an improved match to observed plate tectonic scores. Those include the correlation with plate motions, the magnitude of intraplate deformation, and oceanic to continental plate veloCity ratios. Net rotation of the lithosphere with respect to the lower mantle may be caused jointly by regional slab forcing and the stirring effect of cratonic keels. However, slab models have so far only produced net rotations that are small compared to recent hotspot reference-frame models. Progress in the next years will likely come from a better understanding of slab strength, which is still uncertain since large-scale subduction zone observables and laboratory results do not put strong constraints on slab rheology. Importantly, circulation models with an improved representation of convergent margins will help to close the gap between regional and global approaches to subduction, and to better understand the potential role of the overriding plate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Batchelor GK (1967) An introduction to fl uid dynamics. Cambridge University Press, Cambridge UK

    Google Scholar 

  • Becker TW (2006) On the effect of temperature and strain-rate dependent viscosity on global mantle flow, net rotation, and plate-driving forces. Geophys J Int 167:943–957

    Article  Google Scholar 

  • Becker TW (2008) Azimuthal seismic anisotropy constrains net rotation of the lithosphere. Geophys Res Lett 35, doi:10.102 9/2007GL032928,correction: doi:10.1029/2008GL033946

    Google Scholar 

  • Becker TW, Boschi L (2002) A comparison of tomographic and geodynamic mantle models. Geochem Geophys Geosyst 3:2001GC000168

    Article  Google Scholar 

  • Becker TW, O'Connell RJ (2001) Predicting plate velocities with geodynamic models. Geochem Geophys Geosyst 2:2001GC000171

    Google Scholar 

  • Becker TW, Faccenna C, O'Connell RJ, Giardini D (1999) The development of slabs in the upper mantle: insight from numerical and laboratory experiments. J Geophys Res 104:15207–15225

    Article  Google Scholar 

  • Becker TW, Kellogg JB, Ekström G, O'Connell RJ (2003) Comparison of azimuthal seismic anisotropy from surface waves and fi nite-strain from global mantle-circulation models. Geophys J Int 155:696–714

    Article  Google Scholar 

  • Becker TW, Schulte-Pelkum V, Blackman DK, Kellogg JB, O'Connell RJ (2006) Mantle fl ow under the western United States from shear wave splitting. Earth Planet Sci Lett 247:235–251

    Article  Google Scholar 

  • Bellahsen N, Faccenna C, Funiciello F (2005) Dynamics of sub-duction and plate motion in laboratory experiments: insights into the plate tectonics behavior of the Earth. J Geophys Res 110, doi:10.1029/2004JB002999

    Google Scholar 

  • Bercovici D (2003) The generation of plate tectonics from mantle convection. Earth Planet Sci Lett 205:107–121

    Article  Google Scholar 

  • Bercovici D, Ricard Y, Richards M (2000) The relationship between mantle dynamics and plate tectonics: a primer. In: Richards M, Gordon R, van der Hilst RD (eds.), The History and Dynamics of Global Plate Motions, American Geophysical Union, Washington, DC, vol. 121 of Geophysical Monograph, 5–46

    Chapter  Google Scholar 

  • Bevis M (1986) The curvature of Wadati-Benioff zones and the torsional rigidity of subducting plates. Nature 323:52–53

    Article  Google Scholar 

  • Bevis M (1988) Seismic slip and down dip strain rate in Wadati-Benioff zones. Science 240:1317–1319

    Article  Google Scholar 

  • Billen MI (2008) Modeling the dynamics of subducting slabs. Annu Rev Earth Planet Sci 36:325–356

    Article  Google Scholar 

  • Billen MI, Gurnis M (2001) A low viscosity wedge in subduc-tion zones. Earth Planet Sci Lett 193:227–236

    Article  Google Scholar 

  • Billen MI, Gurnis M (2003) Multiscale dynamics of the Tonga-Kermadec subduction zone. Geophys J Int 153:359–388

    Article  Google Scholar 

  • Billen MI, Gurnis M (2005) Constraints on subducting plate strength within the Kermadec trench. J Geophys Res 110, doi:10.1029/2004JB003308

    Google Scholar 

  • Billen MI, Hirth G (2007) Rheologic controls on slab dynamics. Geochem Geophys Geosyst 8, doi:10.1029/2007GC001597: Q08012

    Google Scholar 

  • Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4, doi:10.1029/2001GC000252

    Google Scholar 

  • Boschi L, Becker TW, Steinberger B (2007) Mantle plumes: dynamic models and seismic images. Geochem Geophys Geosyst 8, Q10006, doi:10.1029/2007GC001733

    Google Scholar 

  • Brace WF, Kohlstedt DL (1980) Limits on lithospheric stress imposed by laboratory experiments. J Geophys Res 85:6248–6252

    Article  Google Scholar 

  • Budiansky R, Carrier GF (1973) The pointless wedge. SIAM J Appl Mech 25:378–387

    Article  Google Scholar 

  • Buffett BA, Rowley DB (2006) Plate bending at subduction zones: Consequences for the direction of plate motions. Earth Planet Sci Lett 245:359–364

    Article  Google Scholar 

  • Bunge HP, Grand SP (2000) Mesozoic plate-motion history below the northeast Pacifi c Ocean from seismic images of the subducted Farallon slab. Nature 405:337–340

    Article  Google Scholar 

  • Burov EB, Diament M (1995) The effective elastic thickness (T e ) of continental lithosphere: What does it really mean? J Geophys Res 100:3905–3927

    Article  Google Scholar 

  • Buttles J, Olson P (1998) A laboratory model of subduction zone anisotropy. Earth Planet Sci Lett 164:245–262

    Article  Google Scholar 

  • Byerlee J (1978) Friction of rock. Pure Appl Geophys 116:615–626

    Article  Google Scholar 

  • Čadek O, Fleitout L (2003) Effect of lateral viscosity variations in the top 300 km of the mantle on the geoid and dynamic topography. Geophys J Int 152:566–580

    Article  Google Scholar 

  • Čadek O, Ricard Y, Martinec Z, Matyska C (1993) Comparison between Newtonian and non-Newtonian fl ow driven by internal loads. Geophys J Int 112:103–114

    Article  Google Scholar 

  • Capitanio FA, Morra G, Goes S (2007) Dynamic models of downgoing plate-buoyancy driven subduction: Subduction motions and energy dissipation. Earth Planet Sci Lett 262:284–297

    Article  Google Scholar 

  • Carlson RL, Melia PJ (1984) Subduction hinge migration. Tectonophysics 102:1–16

    Article  Google Scholar 

  • Chapple WM, Tullis TE (1977) Evaluation of the forces that drive the plates. J Geophys Res 82:1967–1984

    Article  Google Scholar 

  • Chase CG (1978) Extension behind island arcs and motion relative to hot spots. J Geophys Res 83:5385–5387

    Article  Google Scholar 

  • Chen J, King SD (1998) The infl uence of temperature and depth dependent viscosity on geoid and topography profi les from models of mantle convection. Phys Earth Planet Inter 106:75–91

    Article  Google Scholar 

  • Christensen U (2001) Geodynamic models of deep subduction. Phys Earth Planet Inter 127:25–34

    Article  Google Scholar 

  • Christensen UR (1996) The infl uence of trench migration on slab penetration into the lower mantle. Earth Planet Sci Lett 140:27–39

    Article  Google Scholar 

  • Christensen UR, Yuen DA (1984) The interaction of a subducting lithospheric slab with a chemical or phase boundary. J Geophys Res 89:4389–4402

    Article  Google Scholar 

  • Čížkovä H, adek O, Slancovä A (1998) Regional correlation analysis between seismic heterogeneity in the lower mantle and subduction in the last 180 Myr: implications for mantle dynamics and rheology. Pure Appl Geophys 151:527–537

    Article  Google Scholar 

  • Čížkovä H, van Hunen J, van den Berg AP, Vlaar NJ (2002) The infl uence of rheological weakening and yield stress on the interaction of slabs with the 670-km discontinuity. Earth Planet Sci Lett 199:447–457

    Article  Google Scholar 

  • Clift P, Vannucchi P (2004) Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev Geophys 42, RG2001:1–31

    Google Scholar 

  • Conrad CP, Hager BH (1999a) The effects of plate, bending and fault strength at subduction zones on plate dynamics. J Geophys Res 104:17551–17571

    Article  Google Scholar 

  • Conrad CP, Hager BH (1999b) The thermal evolution of an Earth with strong subduction zones. Geophys Res Lett 26:3041–3044

    Article  Google Scholar 

  • Conrad CP, Lithgow-Bertelloni C (2002) How mantle slabs drive plate tectonics. Science 298:207–209

    Article  Google Scholar 

  • Conrad CP, Lithgow-Bertelloni C (2004) The temporal evolution of plate driving forces: Importance of “slab suction” versus “slab pull” during the Cenozoic. J Geophys Res 109, doi:10.1029/2004JB002991

    Google Scholar 

  • Conrad CP, Lithgow-Bertelloni C (2006) Infl uence of continental roots and asthenosphere on plate-mantle coupling. Geophys Res Lett 33, doi:10.1029/2005GL02562

    Google Scholar 

  • Conrad CP, Bilek S, Lithgow-Bertelloni C (2004) Great earthquakes and slab-pull: Interaction between seismic coupling and plate-slab coupling. Earth Planet Sci Lett 218:109–122

    Article  Google Scholar 

  • Cruciani C, Carminati E, Doglioni C (2005) Slab dip vs. litho-sphere age: no direct function. Earth Planet Sci Lett 238:298–310

    Article  Google Scholar 

  • Davies GF (1995) Penetration of plates and plumes through the mantle transition zone. Earth Planet Sci Lett 133:507–516

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21:2191–2194

    Article  Google Scholar 

  • Deparis V, Legros H, Ricard Y (1995) Mass anomalies due to subducted slabs and simulations of plate motion since 200 My. Earth Planet Sci Lett 89:271–280

    Article  Google Scholar 

  • Di Giuseppe E, van Hunen J, Funiciello F, Faccenna C, Giardini D (2008) Slab stiffness controls trench motion: insights from numerical models. Geochem Geophys Geosyst 9, doi:10.1029/2007GC001776:Q02014

    Google Scholar 

  • Doglioni C (1990) The global tectonic pattern. J Geodynamics 12:21–38

    Article  Google Scholar 

  • Doglioni C, Carminati E, Cuffaro M, Scrocca D (2007) Subduction kinematics and dynamic constraints. Earth Sci Rev 83:125–175

    Article  Google Scholar 

  • Dumoulin C, Bercovici D, Wessel P (1998) A continuous plate-tectonic model using geophysical data to estimate plate-margin widths, with a seismiCity-based example. Geophys J Int 133:379–389

    Article  Google Scholar 

  • Dvorkin J, Nur A, Mavko G, Ben-Avraham Z (1993) Narrow subducting slabs and the origin of backarc basins. Tectonophysics 227:63–79

    Article  Google Scholar 

  • Dziewoński AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356

    Article  Google Scholar 

  • England PC, Molnar P (1997) Active deformation of Asia: from kinematics to dynamics. Science 278:647–650

    Article  Google Scholar 

  • Enns A, Becker TW, Schmeling H (2005) The dynamics of sub-duction and trench migration for viscosity stratification. Geophys J Int 160:761–775

    Article  Google Scholar 

  • Faccenna C, Davy P, Brun JP, Funiciello R, Giardini D, Mattei M, Nalpas T (1996) The dynamics of back-arc extension: an experimental approach to the opening of the Tyrrhenian Sea. Geophys J Int 126:781–795

    Article  Google Scholar 

  • Faccenna C, Giardini D, Davy P, Argentieri A (1999) Initiation of subduction at Atlantic type margins: Insights from laboratory experiments. J Geophys Res 104:2749–2766

    Article  Google Scholar 

  • Faccenna C, Becker TW, Lucente FP, Jolivet L, Rossetti F (2001a) History of subduction and back-arc extension in the central Mediterranean. Geophys J Int 145:809–820

    Article  Google Scholar 

  • Faccenna C, Funiciello F, Giardini D, Lucente P (2001b) Episodic back-arc extension during restricted mantle convection in the Central Mediterranean. Earth Planet Sci Lett 187:105–116

    Article  Google Scholar 

  • Faccenna C, Piromallo C, Crespo Blanc A, Jolivet L, Rossetti F (2004) Lateral slab deformation and the origin of the arcs of the western Mediterranean. Tectonics 23, doi:10.1029/ 2002TC001488:TC1012

    Google Scholar 

  • Faccenna C, Heuret A, Funiciello F, Lallemand S, Becker TW (2007) Predicting trench and plate motion from the dynamics of a strong slab. Earth Planet Sci Lett 257:29–36

    Article  Google Scholar 

  • Fischer KM, Jordan TH (1991) Seismic strain rate and deep slab deformation in Tonga. J Geophys Res 96:14429–14444

    Article  Google Scholar 

  • Forsyth DW, Uyeda S (1975) On the relative importance of the driving forces of plate motion. Geophys J R Astr Soc 43:163–200

    Article  Google Scholar 

  • Forte AM, Mitrovica JX (2001) Deep-mantle high-viscosity fl ow and thermochemical structure inferred from seismic and geodynamic data. Nature 410:1049–1056

    Article  Google Scholar 

  • Forte AM, Peltier WR (1987) Plate tectonics and aspherical earth structure: the importance of poloidal-toroidal coupling. J Geophys Res 92:3645–3679

    Article  Google Scholar 

  • Forte A, Peltier WR (1994) The kinematics and dynamics of poloidal-toroidal coupling in mantle fl ow: the importance of surface plates and lateral viscosity variations. Adv Geophys 36:1–119

    Article  Google Scholar 

  • Funiciello F, Faccenna C, Giardini D, Regenauer-Lieb K (2003a) Dynamics of retreating slabs (part 2): insights from 3D laboratory experiments. J Geophys Res 108, doi:10.1029/ 2001JB000896

    Google Scholar 

  • Funiciello F, Morra G, Regenauer-Lieb K, Giardini D (2003b) Dynamics of retreating slabs (part 1): insights from numerical experiments. J Geophys Res

    Google Scholar 

  • Funiciello F, Faccenna C, Giardini D (2004) Flow in the evolution of subduction system: Insights from 3-D laboratory experiments. Geophys J Int 157:1393–1407

    Article  Google Scholar 

  • Funiciello F, Moroni M, Piromallo C, Faccenna C, Cenedese A, Bui HA (2006) Mapping fl ow during retreating subduction: laboratory models analyzed by Feature Tracking. J Geophys Res 111, doi:10.1029/2005JB003792

    Google Scholar 

  • Funiciello F, Faccenna C, Heuret A, Di Giuseppe E, Lallemand S, Becker TW (2008) Trench migration, net rotation and slab-mantle coupling. Earth Planet Sci Lett 271:233–240

    Article  Google Scholar 

  • Gable CW, O'Connell RJ, Travis BJ (1991) Convection in three dimensions with surface plates: generation of toroidal fl ow. J Geophys Res 96:8391–8405

    Article  Google Scholar 

  • Garfunkel Z, Anderson CA, Schubert G (1986) Mantle circulation and the lateral migration of subducted slabs. J Geophys Res 91:7205–7223

    Article  Google Scholar 

  • Giardini D, Woodhouse JH (1984) Deep seismiCity and modes of deformation in Tonga subduction zone. Nature 307:505–509

    Article  Google Scholar 

  • Giardini D, Woodhouse JH (1986) Horizontal shear fl ow in the mantle beneath the Tonga arc. Nature 319:551–555

    Article  Google Scholar 

  • Gordon RG (2000) Diffuse oceanic plate boundaries: Strain rates, vertically averaged rheology, and comparisons with narrow plate boundaries and stable plate interiors. In: Richards MA, Gordon RG, van der Hilst RD (eds.), The History and Dynamics of Global Plate Motion, American Geophysical Union, Washington DC, vol. 121 of Geophysical Monograph, 143–159

    Chapter  Google Scholar 

  • Gordon RG, Jurdy DM (1986) Cenozoic global plate motions. J Geophys Res 91:12389–12406

    Article  Google Scholar 

  • Gouillou-Frottier L, Buttles J, Olson P (1995) Laboratory experiments on the structure of subducted lithosphere. Earth Planet Sci Lett 133:19–34

    Article  Google Scholar 

  • Grand SP, van der Hilst RD, Widiyantoro S (1997) Global seismic tomography; a snapshot of convection in the Earth. GSA Today 7:1–7

    Google Scholar 

  • Griffi ths RW, Hackney RI, van der Hilst RD (1995) A laboratory investigation of effects of trench migration on the descent of subducted slabs. Earth Planet Sci Lett 133:1–17

    Article  Google Scholar 

  • Gripp AE, Gordon RG (1990) Current plate velocities relative to the hotspots incorporating the NUVEL-1 global plate motion model. Geophys Res Lett 17:1109–1112

    Article  Google Scholar 

  • Gripp AE, Gordon RG (2002) Young tracks of hotspots and current plate velocities. Geophys J Int 150:321–361

    Article  Google Scholar 

  • Gudmundsson O, Sambridge M (1998) A regionalized upper mantle (RUM) seismic model. J Geophys Res 103:7121–7136

    Article  Google Scholar 

  • Gurnis M, Davies GF (1986) The effect of depth-dependent viscosity on convective mixing in the mantle and the possible survival of primitive mantle. Geophys Res Lett 13:541–544

    Article  Google Scholar 

  • Gurnis M, Hager BH (1988) Controls of the structure of subducted slabs. Nature 335:317–321

    Article  Google Scholar 

  • Gurnis M, Zhong S, Toth J (2000) On the competing roles of fault reactivation and brittle failure in generating plate tectonics from mantle convection. In: Richards MA, Gordon RG, van der Hilst RD (eds.), The History and Dynamics of Global Plate Motions, AGU, Washington DC, vol. 121 of Geophysical Monograph, 73–94

    Chapter  Google Scholar 

  • Hager BH (1984) Subducted slabs and the geoid: constraints on mantle rheology and fl ow. J Geophys Res 89:6003–6015

    Article  Google Scholar 

  • Hager BH, Clayton RW (1989) Constraints on the structure of mantle convection using seismic observations, fl ow models, and the geoid. In: Peltier WR (ed.), Mantle convection: Plate tectonics and global dynamics, Gordon and Breach Science Publishers, New York, N Y, vol. 4 of The Fluid Mechanics of Astrophysics and Geophysics, 657–763

    Google Scholar 

  • Hager BH, O'Connell RJ (1978) Subduction zone dip angles and fl ow derived by plate motion. Tectonophysics 50:111–133

    Article  Google Scholar 

  • Hager BH, O'Connell RJ (1981) A simple global model of plate dynamics and mantle convection. J Geophys Res 86:4843–4867

    Article  Google Scholar 

  • Hager BH, O'Connell RJ, Raefsky A (1983) Subduction, back-arc spreading and global mantle fl ow. Tectonophysics 99:165–189

    Article  Google Scholar 

  • Hall CE, Gurnis M (2005) Strength of fracture zones from their barymetric and gravitational evolution. J Geophys Res 110, doi:10.1029/2004JB003312

    Google Scholar 

  • Hall CE, Gurnis M, Sdrolias M, Lavier LL, Muller RD (2003) Catastrophic initiation of subduction following forced convergence at transform boundaries. Earth Planet Sci Lett 212:15–30

    Article  Google Scholar 

  • Han L, Gurnis M (1999) How valid are dynamical models of subduction and convection when plate motions are prescribed? Phys Earth Planet Inter 110:235–246

    Article  Google Scholar 

  • Hassani R, Jongmans D, Chéry J (1997) Study of plate deformation and stress in subduction processes using two-dimensional numerical models. J Geophys Res 102:17951–17965

    Article  Google Scholar 

  • Heuret A, Lallemand S (2005) Slab dynamics and back-arc deformation. Phys Earth Planet Inter 149:31–51

    Article  Google Scholar 

  • Heuret A, Funiciello F, Faccenna C, Lallemand S (2007) Plate kinematics, slab shape and back-arc stress: A comparison between laboratory models and current subduction zones. Earth Planet Sci Lett 256:473–483

    Article  Google Scholar 

  • Hirth G, Kohlstedt DL (2004) Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. In: Eiler J (ed.), Inside the Subduction Factory, American Geophysical Union, Washington DC, vol. 138 of Geophysical Monograph, 83–105

    Chapter  Google Scholar 

  • Holt WE (1995) Flow fi elds within the Tonga slab determined from the moment tensors of deep earthquakes. Geophys Res Lett 22:989–992

    Article  Google Scholar 

  • Houseman GA, Gubbins D (1997) Deformation of subducted oceanic lithosphere. Geophys J Int 131:535–551

    Article  Google Scholar 

  • Humphreys ED, Coblentz D (2007) North American dynamics and western U.S. tectonics. Rev Geophys 45, RG3001:doi:10. 1029/2005RG000181

    Google Scholar 

  • Husson L, Ricard Y (2004) Stress balance above subduction: application to the Andes. Earth Planet Sci Lett 222:1037–1050

    Article  Google Scholar 

  • Husson L, Conrad CP, Faccenna C (2008) Tethyan closure, Andean orogeny, and westward drift of the Pacifi c basin, Earth Planet Sci Lett 271:303–318.

    Article  Google Scholar 

  • Iaffaldano G, Bunge HP, Dixon TH (2006) Feedback between mountain belt growth and plate convergence. Geology 34:893–896

    Article  Google Scholar 

  • Isacks B, Molnar P (1971) Distribution of stresses in the descending lithosphere from a global survey of focal-mechanism solutions of mantle earthquakes. Rev Geophys Space Phys 9:103–175

    Article  Google Scholar 

  • Ita J, King SD (1998) The infl uence of thermodynamic formulation on simulations of subduction zone geometry and history. Geophys Res Lett 25:1463–1466

    Article  Google Scholar 

  • Jacoby WR, Schmeling H (1981) Convection experiments and driving mechanism. Geol Rundschau 24:217–284

    Google Scholar 

  • Jarrard RD (1986) Relations among subduction parameters. Rev Geophys 24:217–284

    Article  Google Scholar 

  • Jordan TH (1978) Composition and development of the continental tectosphere. Nature 274:544–548

    Article  Google Scholar 

  • Kärason H (2002) Constraints on mantle convection from seismic tomography and fl ow modeling. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge MA

    Google Scholar 

  • Kärason H, van der Hilst RD (2000) Constraints on mantle convection from seismic tomography. In: Richards MA, Gordon RG, van der Hilst RD (eds.), The History and Dynamics of Global Plate Motion, American Geophysical Union, Washington DC, vol. 121 of Geophysical Monograph, 277–288

    Chapter  Google Scholar 

  • Karato Si (1998) Seismic anisotropy in the deep mantle, boundary layers and the geometry of convection. Pure Appl Geophys 151:565–587

    Article  Google Scholar 

  • Kaus BJP, Becker TW (2007) Effects of elastiCity on the Rayleigh-Taylor instability: implications for large-scale geodynamics. Geophys J Int 168:843–862

    Article  Google Scholar 

  • Kaus BJP, Podladchikov YY (2006) Initiation of localized shear in visco-elasto-plastic rocks. J Geophys Res 111, doi:10.1029/2005JB003652

    Google Scholar 

  • Kemp DV, Stevenson DJ (1996) A tensile, fl exural model for the initiation of subduction. Geophys J Int 125:73–94

    Article  Google Scholar 

  • Kincaid C, Griffith RW (2003) Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature 425:58–62

    Article  Google Scholar 

  • Kincaid C, Olson P (1987) An experimental study of subduction and slab migration. J Geophys Res 92:13832–13840

    Article  Google Scholar 

  • King SD (2001) Subduction: Observations and geodynamic models. Phys Earth Planet Inter 127:9–24

    Article  Google Scholar 

  • King SD (2007) Mantle downwellings and the fate of subducting slabs: constraints from seismology, geoid, topography, geochemistry, and pretrology. In: Schubert G, Bercovici D (eds.), Treatise on Geophysics, Elsevier. In press

    Google Scholar 

  • King SD, Hager BH (1990) The relationship between plate veloCity and trench viscosity in Newtonian and power- law subduction calculations. Geophys Res Lett 17:2409–2412

    Article  Google Scholar 

  • King SD, Gable CW, Weinstein SA (1992) Models of convection-driven tectonic plates: a comparison of methods and results. Geophys J Int 109:481–487

    Article  Google Scholar 

  • Kirby SH, Kronenberg AK (1987) Rheology of the lithosphere: Selected topics. Rev Geophys 25:1219–1244

    Article  Google Scholar 

  • Kley J (1999) Geologic and geometric constraints on a kinematic model of the Bolivian orocline. J South Am Earth Sci 12:221–235

    Article  Google Scholar 

  • Korenaga J (2003) Energetics of mantle convection and the fate of fossile heat. Geophys Res Lett 30, 8:doi:10.1029/ 2003GL016

    Google Scholar 

  • Kreemer C, Holt WE, Haines AJ (2003) An integrated global model of present-day plate motions and plate boundary deformation. Geophys J Int 154:5–34

    Article  Google Scholar 

  • Lallemand S (1995) High rates of arc consumption by subduc-tion processes: some consequences. Geology 23:551–554

    Article  Google Scholar 

  • Lallemand S, Heuret A, Boutelier D (2005) On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochem Geophys Geosyst 6, doi:10.1029/2005GC000917

    Google Scholar 

  • Lee CTA, Lenardic A, Cooper CM, Niu F, Levander A (2005) The role of chemical boundary layers in regulating the thickness of continental and oceanic thermal boundary layers. Earth Planet Sci Lett 230:379–395

    Article  Google Scholar 

  • Lenardic A, Moresi LN, Jellinek AM, Manga M (2005) Continental insulation, mantle cooling, and the surface area of oceans and continents. Earth Planet Sci Lett 234:317–333

    Article  Google Scholar 

  • Lithgow-Bertelloni C, Guynn JH (2004) Origin of the litho-spheric stress fi eld. J Geophys Res 109, doi:10.1029/ 2003JB002467

    Google Scholar 

  • Lithgow-Bertelloni C, Richards MA (1995) Cenozoic plate driving forces. Geophys Res Lett 22:1317–1320

    Article  Google Scholar 

  • Lithgow-Bertelloni C, Richards MA (1998) The dynamics of Cenozoic and Mesozoic plate motions. Rev Geophys 36:27–78

    Article  Google Scholar 

  • Lithgow-Bertelloni C, Richards MA, Ricard Y, O'Connell RJ, Engebretson DC (1993) Toroidal-poloidal partitioning of plate motions since 120 Ma. Geophys Res Lett 20:375–378

    Article  Google Scholar 

  • McAdoo DC, Martin CF, Polouse P (1985) Seasat observations of fl exure: Evidence for a strong lithosphere. Tectonophysics 116:209–222

    Article  Google Scholar 

  • McClusky S, Bassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Kekelidze G, King R, Kotzev V, Lenk O, Mahmoud S, Mishin A, Nadariya M, Ouzounis A, Paradissis D, Peter Y, Preilepin M, Reilinger R, Sanli I, Seeger H, Tealeb A, Toksoz MN, Veis G (2000) Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719

    Google Scholar 

  • McKenzie DP (1969) Speculations on the consequences and causes of plate motions. Geophys J R Astr Soc 18:1–32

    Article  Google Scholar 

  • McKenzie DP, Parker RL (1967) The North Pacifi c; an example of tectonics on a sphere. Nature 216:1276–1280

    Article  Google Scholar 

  • Melosh HJ, Raefsky A (1980) The dynamical origin of subduction zone topography. Geophys J R Astr Soc 60:333–354

    Article  Google Scholar 

  • Melosh HJ, Williams CA (1989) Mechanics of graben formation in crustal rocks: A fi nite element analysis. J Geophys Res 94:13961–13973

    Article  Google Scholar 

  • Mihälffy P, Steinberger B, Schmeling H (2007) The effect of the large-scale mantle fl ow fi eld on the Iceland hotspot track. Tectonophysics in press

    Google Scholar 

  • Mihälffy P, Steinberger S, Schmeling H (2008) The effect of the large-scale mantle fl ow fi eld on the Iceland hotspot trade. Technophysics 447:5–18

    Article  Google Scholar 

  • Minster JB, Jordan TH (1978) Present-day plate motions. J Geophys Res 83:5331–5354

    Article  Google Scholar 

  • Mitrovica JX, Forte AM (2004) A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet Sci Lett 225:177–189

    Article  Google Scholar 

  • Molnar P, Stock J (1987) Relative motions of hotspots in the Pacifi c, Atlantic, and Indian Oceans since Late Cretaceous time. Nature 327:587–591

    Article  Google Scholar 

  • Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38:8

    Google Scholar 

  • Moresi LN, Gurnis M (1996) Constraints on the lateral strength of slabs from three-dimensional dynamic fl ow models. Earth Planet Sci Lett 138:15–28

    Article  Google Scholar 

  • Moresi LN, Solomatov V (1998) Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophys J Int 133:669–682

    Article  Google Scholar 

  • Moresi LN, Solomatov VS (1995) Numerical investigations of 2D convection with extremely large viscosity variations. Phys Fluids 7:2154–2162

    Article  Google Scholar 

  • Moresi LN, Dufour F, Muehlhaus HB (2002) Mantle convection modeling with viscoelastic/brittle lithosphere: numerical modeling and plate tectonic modeling. Pure Appl Geophys 159:2335–2356

    Article  Google Scholar 

  • Morgan WJ (1968) Rises, trenches, great faults, and crustal blocks. J Geophys Res 73:1959–1982

    Article  Google Scholar 

  • Morgan JP (1971) Convection plumes in the lower mantle. Nature 230:42–43

    Article  Google Scholar 

  • Morra G, Regenauer-Lieb K, Giardini D (2006) Curvature of oceanic arcs. Geology 34:877–880

    Article  Google Scholar 

  • Moucha R, Forte AM, Mitrovica JX, Daradich A (2007) Lateral variations in mantle rheology: implications for convection related surface observables and inferred viscosity models. Geophys J Int 169:113–135

    Article  Google Scholar 

  • Muhlhaus HB, Regenauer-Lieb K (2005) Towards a self-consistent plate mantle model that includes elastiCity: simple benchmarks and application to basic modes of convection. Geophys J Int 163:788–800

    Article  Google Scholar 

  • O'Connell RJ, Gable CW, Hager BH (1991) Toroidal-poloidal partitioning of lithospheric plate motions. In: Sabadini R, Lambeck K (eds.), Glacial Isostasy, Sea-Level and Mantle Rheology, Kluwer Academic Publishers, Norwell MA, 535–551

    Chapter  Google Scholar 

  • Olbertz D, Wortel MJR, Hansen U (1997) Trench migration and subduction zone geometry. Geophys Res Lett 24:221–224

    Article  Google Scholar 

  • Olson P, Bercovici D (1991) On the equipartitioning of kinematic energy in plate tectonics. Geophys Res Lett 18:1751–1754

    Article  Google Scholar 

  • O'Neill C, Müller D, Steinberger B (2005) On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochemistry Geophysics Geosystems 6

    Google Scholar 

  • Phipps Morgan J, Morgan WJ, Zhang YS, Smith WHF (1995) Observational hints for a plume-fed, suboceanic astheno-sphere and its role in mantle convection. J Geophys Res 100:12753–12767

    Article  Google Scholar 

  • Piromallo P, Becker TW, Funiciello F, Faccenna C (2006) Three-dimensional instantaneous mantle fl ow induced by subduc-tion. Geophys Res Lett 33, doi:10.1029/2005GL025390

    Google Scholar 

  • Ranero C, Phipps Morgan J, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–373

    Article  Google Scholar 

  • Regenauer-Lieb K, Yuen DA, Branlund J (2001) The initiation of subduction; criticality by addition of water? Science 294:578–580

    Article  Google Scholar 

  • Ribe NM (1992) The dynamics of thin shells with variable viscosity and the origin of toroidal fl ow in the mantle. Geophys J Int 110:537–552

    Article  Google Scholar 

  • Ribe NM (2003) Periodic folding of viscous sheets. Phys Rev E 86, 036305

    Article  Google Scholar 

  • Ribe NM, Stutzmann E, Ren Y, van der Hilst R (2007) Buckling instabilities of subducted lithosphere beneath the transition zone. Earth Planet Sci Lett 254:173–179

    Article  Google Scholar 

  • Ricard Y, Vigny C (1989) Mantle dynamics with induced plate tectonics. J Geophys Res 94:17543–17559

    Article  Google Scholar 

  • Ricard Y, Doglioni C, Sabadini R (1991) Differential rotation between lithosphere and mantle: A consequence of lateral mantle viscosity variations. J Geophys Res 96:8407–8415

    Article  Google Scholar 

  • Ricard Y, Richards MA, Lithgow-Bertelloni C, Le Stunff Y (1993) A geodynamic model of mantle density heterogeneity. J Geophys Res 98:21895–21909

    Article  Google Scholar 

  • Richards MA (1991) Hotspots and the case for a high-viscosity lower mantle. In: Sabadini R, Lambeck K (eds.), Glacial Isostasy, Sea-Level and Mantle Rheology, Kluwer Academic Publishers, Norwell MA, 571–588

    Chapter  Google Scholar 

  • Riedel MR, Karato Si (1997) Grain-size evolution in subducted oceanic lithosphere associated with the olivine-spinel transformation and its effects on rheology. Earth Planet Sci Lett 148:27–43

    Article  Google Scholar 

  • Royden LH, Husson L (2006) Trench motion, slab geometry and viscous stresses in subduction systems. Geophys J Int 167:881–905

    Article  Google Scholar 

  • Russo RM, Silver PG (1994) Trench-parallel fl ow beneath the Nazca plate from seismic anisotropy. Science 263:1105–1111

    Article  Google Scholar 

  • Schellart WP (2004a) Kinematics of subduction and subduction-induced fl ow in the upper mantle. J Geophys Res 109, doi:10.1029/2004JB002970

    Google Scholar 

  • Schellart WP (2004b) Quantifying the net slab pull force as a driving mechanism for plate tectonics. Geophys Res Lett 31, 5

    Article  Google Scholar 

  • Schellart WP, Freeman J, Stegman DR, Moresi LN (2007) Evolution and diversity of subduction zones controlled by slab width. Nature 446:308–311

    Article  Google Scholar 

  • Schmeling H, Babeyko A, Enns A, Faccenna C, Funiciello F, Gerya T, Golabek G, Grigull S, Kaus BJP, Morra G, van Hunen J (2007) A benchmark comparison of subduction models. Phys Earth Planet Inter 171:198–223

    Article  Google Scholar 

  • Sdrolias M, Müller RD (2006) Controls on back-arc basin formation. Geochemistry Geophysics Geosystems 7, doi:10.1029/2005GC001090

    Google Scholar 

  • Sella GF, Dixon TH, Mao A (2002) REVEL: A model for recent plate velocities from space geodesy. J Geophys Res 107, doi:10.1029/2000JB000033

    Google Scholar 

  • Shemenda AI (1994) Subduction: Insights from Physical Modelling. Modern Approaches in Geophysics. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Solomon SC, Sleep NH (1974) Some simple physical models for absolute plate motions. J Geophys Res 79:2557–2567

    Article  Google Scholar 

  • Spence W (1977) Aleutian arc-tectonic blocks, episodic subduc-tion, strain diffusion, and magma generation. J Geophys Res 82:213–230

    Article  Google Scholar 

  • Stegman DR, Freeman J, Schellart WP, Moresi L, May D (2006) Infl uence of trench width on subduction hinge retreat rates in 3-D models of slab rollback. Geochemistry Geophysics Geosystems 7, doi:10.1029/2005GC001056

    Google Scholar 

  • Stein C, Schmalz J, Hansen U (2004) The effect of rheologi-cal parameters on plate behaviour in a self-consistent model of mantle convection. Phys Earth Planet Inter 142:225–255

    Article  Google Scholar 

  • Steinberger B (2000) Slabs in the lower mantle — results of dynamic modelling compared with tomographic images and the geoid. Phys Earth Planet Inter 118:241–257

    Article  Google Scholar 

  • Steinberger B, Schmeling H, Marquart G (2001) Large-scale lithospheric stress fi eld and topography induced by global mantle circulation. Earth Planet Sci Lett 186:75–91

    Article  Google Scholar 

  • Steinberger B, Sutherland R, O'Connell RJ (2004) Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle fl ow. Nature 430:167–173

    Article  Google Scholar 

  • Stevenson DJ, Turner JS (1972) Angle of subduction. Nature 270:334–336

    Article  Google Scholar 

  • Tackley PJ (2000a) The quest for self-consistent incorporation of plate tectonics in mantle convection. In: Richards M, Gordon R, van der Hilst RD (eds.), The History and Dynamics of Global Plate Motions, American Geophysical Union, Washington, DC, vol. 121 of Geophysical Monograph

    Chapter  Google Scholar 

  • Tackley PJ (2000b) Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 1. Pseudoplastic yielding. Geochem Geophys Geosyst 1:2000GC000036

    Google Scholar 

  • Tackley PJ (2000c) Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 2. Strain weakening and astheno-sphere. Geochemistry Geophysics Geosystems 1, 2000GC000043

    Google Scholar 

  • Tackley PJ, Stevenson DJ, Glatzmaier GA, Schubert G (1994) Effects of multiple phase transitions in a three-dimensional spherical model of convection in Earth's mantle. J Geophys Res 99:15877–15901

    Article  Google Scholar 

  • Tan E, Gurnis M, Han L (2002) Slabs in the lower mantle and their modulation of plume formation. Geochem Geophys Geosyst 3:2001GC000238

    Article  Google Scholar 

  • Tan E, Choi E, Thoutireddy P, Gurnis M, Aivazis M (2006) GeoFramework: Coupling multiple models of mantle convection within a computational framework. Geochem Geophys Geosyst 7, doi:10.1029/2005GC001155

    Google Scholar 

  • Tao WC, O'Connell RJ (1993) Deformation of a weak subducted slab and variation of seismiCity with depth. Nature 361:626–628

    Article  Google Scholar 

  • Tarduno JA, Duncan RA, Scholl DW, Cottrell RD, Steinberger B, Thordarson T, Kerr B. C. and. Neal CR, Frey FA, Torii M, Carvallo C (2003) The Emperor Seamounts: Southward motion of the Hawaiian hotspot plume in Earth's mantle. Science 301:1064–1069

    Article  Google Scholar 

  • Tetzlaff M, Schmeling H (2000) The infl uence of olivine metastability on deep subduction of oceanic lithosphere. Phys Earth Planet Inter 120:29–38

    Article  Google Scholar 

  • Thoraval C, Richards MA (1997) The geoid constraint in global geodynamics: viscosity structure, mantle heterogeneity models and boundary conditions. Geophys J Int 131:1–8

    Article  Google Scholar 

  • Toth J, Gurnis M (1998) Dynamics of subduction initiation at pre-existing fault zones. J Geophys Res 103:18053–18067

    Article  Google Scholar 

  • Turcotte DL, Oxburgh ER (1967) Finite amplitude convective cells and continental drift. J Fluid Mech 28:29–42

    Article  Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics. Cambridge University Press, Cambridge, 2nd edn.

    Google Scholar 

  • Uyeda S, Kanamori HJ (1979) Back-arc opening and the mode of subduction. J Geophys Res 84:1049–1061

    Article  Google Scholar 

  • van der Hilst RD, Seno T (1993) Effects of relative plate motion on the deep structure and penetration depth of slabs below the Izu-Bonin and Mariana island arcs. Earth Planet Sci Lett 120:395–407

    Article  Google Scholar 

  • van Hunen J, van den Berg AP (2007) Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103:217–235

    Article  Google Scholar 

  • van Hunen J, van den Berg AP, Vlaar NJ (2000) A thermome-chanical model of horizontal subduction below an overriding plate. Earth Planet Sci Lett 182:157–169

    Article  Google Scholar 

  • van Keken PE (2003) The structure and dynamics of the mantle wedge. Earth Planet Sci Lett 215:323–338

    Article  Google Scholar 

  • Vassiliou MS, Hager BH (1988) Subduction zone earthquakes and stress in slabs. Pure Appl Geophys 128:547–624

    Article  Google Scholar 

  • Weijermars R, Schmeling H (1986) Scaling of Newtonian and non-Newtonian fl uid dynamics without inertia for quantitative modelling of rock fl ow due to gravity (including the concept of rheological similarity). Phys Earth Planet Inter 43:316–330

    Article  Google Scholar 

  • Wen L, Anderson DL (1997) Present-day plate motion constraint on mantle rhelogy and convection. J Geophys Res 102:24639–24653

    Article  Google Scholar 

  • Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans AGU 72:445–446

    Article  Google Scholar 

  • Widiyantoro S, van der Hilst RD (1997) Mantle structure beneath Indonesia inferred from high-resolution tomographic imaging. Geophys J Int 130:167–182

    Article  Google Scholar 

  • Wilson JT (1973) Mantle plumes and plate motions. Tectonophysics 19:149–164

    Article  Google Scholar 

  • Yoshida M, Honda S, Kido M, Iwase Y (2001) Numerical simulation for the prediction of the plate motions: effects of lateral viscosity variations in the lithosphere. Earth Planets Space 53:709–721

    Google Scholar 

  • Zhang S, Christensen U (1993) Some effects of lateral viscosity variations on geoid and surface velocities induced by density anomalies in the mantle. Geophys J Int 114:531–547

    Article  Google Scholar 

  • Zhong S (2001) Role of ocean-continent contrast and continental keels on plate motion, net rotation of lithosphere, and the geoid. J Geophys Res 106:703–712

    Article  Google Scholar 

  • Zhong S, Davies GF (1999) Effects of plate and slab viscosities on geoid. Earth Planet Sci Lett 170:487–496

    Article  Google Scholar 

  • Zhong S, Gurnis M (1994) Controls on trench topography from dynamic models of subducted slabs. J Geophys Res 99:15683–15695

    Article  Google Scholar 

  • Zhong S, Gurnis M (1995) Mantle convection with plates and mobile, faulted plate margins. Science 267:838–842

    Article  Google Scholar 

  • Zhong S, Gurnis M (1996) Interaction of weak faults and non-newtonian rheology produces plate tectonics in a 3D model of mantle fl ow. Nature 383:245–247

    Article  Google Scholar 

  • Zhong S, Gurnis M, Moresi L (1998) Role of faults, nonlinear rheology, and viscosity structure in generating plates from instantaneous mantle fl ow models. J Geophys Res 103:15255–15268

    Article  Google Scholar 

  • Zhong S, Zuber MT, Moresi L, Gurnis M (2000) Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. J Geophys Res 105:11063–11082

    Article  Google Scholar 

  • Zhong S, Zhang N, Li ZX, Roberts JH (2007) Supercontinent cycles, true polar wander, and very long wavelength mantle convection. Earth Planet Sci Lett 261:551–564

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Becker, T.W., Faccenna, C. (2009). A Review of the Role of Subduction Dynamics for Regional and Global Plate Motions. In: Lallemand, S., Funiciello, F. (eds) Subduction Zone Geodynamics. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87974-9_1

Download citation

Publish with us

Policies and ethics