Skip to main content

Overcoming the Key Challenges in De Novo Protein Design: Enhancing Computational Efficiency and Incorporating True Backbone Flexibility

  • Chapter
Mathematical Modelling of Biosystems

Part of the book series: Applied Optimization ((APOP,volume 102))

Abstract

De novo protein design is initiated with a postulated or known flexible threedimensional protein structure and aims at identifying amino acid sequences compatible with such a structure. The problem was first denoted as the “inverse folding problem” [4, 5] since protein design has intimate links to the well-known protein folding problem [6]. While the protein folding problem aims at determining the single structure for a sequence, the de novo protein design problem exhibits a high level of degeneracy; that is, a large number of sequences are always found to share a common fold, although the sequences will vary with respect to properties such as activity and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kiepeis, J.L., Floudas, C.A., Morikis, D., Tsokos, C.G., Argyropoulos, E., Spruce, L., Lambris, J.D.: Integrated structural, computational and experimental approach for lead optimization: deisgn of compstatin variants with improved activity. J. Am. Chem. Soc., 125, 8422–8423 (2003)

    Article  Google Scholar 

  2. Klepeis, J.L., Floudas, C.A., Morikis, D., Tsokos, C.G., Lambris, J.D.: Design of peptide analogs with improved activity using a novel de novo protein design approach. Ind. Eng. Chem. Res., 43, 3817–3826 (2004)

    Article  Google Scholar 

  3. Jin, W., Kambara, O., Sasakawa, H., Tamura, A., Takada, S.: De novo design of foldable proteins with smooth folding funnel: automated negative design and experimental verification. Structure, 11, 581–590 (2003)

    Article  Google Scholar 

  4. Drexler, K.E.: Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc. Natl. Acad. Sci. USA, 78, 5275–5278 (1981)

    Article  Google Scholar 

  5. Pabo, C.: Molecular technology: designing proteins and peptides. Nature, 301, 200 (1983)

    Article  Google Scholar 

  6. Hardin, C., Pogorelov, T.V., Luthey-Schulten, Z.: Ab initio protein structure prediction. Curr. Opin. Struc. Biol., 12, 176–181 (2002)

    Article  Google Scholar 

  7. Moore, J.C., Arnold, F.H.: Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat. Biotechnol., 14, 458–467 (1996)

    Article  Google Scholar 

  8. Voigt, C.A., Mayo, S.L., Arnold, F.H., Wang, Z-G.: Computational method to reduce the search space for directed protein evolution. Proc. Natl. Acad. Sci. USA, 98, 3778–3783 (2001)

    Article  Google Scholar 

  9. Skandalis, A., Encell, L.P., Loeb, L.A.: Creating novel enzymes by applied molecular evolution. Chem. Biol., 4, 889–898 (1997)

    Article  Google Scholar 

  10. Ponder, J.W., Richards, F.M.: Tertiary templates for proteins. J. Mol. Biol., 193, 775–791 (1987)

    Article  Google Scholar 

  11. Desjarlais, J.R., Handel, T.M.: De novo design of the hydrophobic cores of proteins. Protein Sci., 4, 2006–2018 (1995)

    Google Scholar 

  12. Koehl, P., Levitt, M.: De novo protein design I. In search of stability and specificity. J. Mol. Biol., 293, 1161–1181 (1999)

    Article  Google Scholar 

  13. Voigt, C.A., Gordon, D.B., Mayo, S.L.: Trading accuracy for speed: a quantitative comparison of search algorithms in protein sequence design. J. Mol. Biol., 299, 789–803 (2000)

    Article  Google Scholar 

  14. Desjarlais, J.R., Handel, T.M.: Side chain and backbone exibility in protein core design. J. Mol. Biol., 290, 305–318 (1999)

    Article  Google Scholar 

  15. Desmet, J., De Maeyer, M., Hazes, B., Lasters, L: The dead-end elimination theorem and its use in side-chain positioning. Nature, 356, 539–542 (1992)

    Article  Google Scholar 

  16. Dahiyat, B.I., Mayo, S.L.: De novo protein design: fully automated sequence selection. Science, 278, 82–87 (1997)

    Article  Google Scholar 

  17. Tobi, D., Elber, R.: Distance-dependent pair potential for protein folding: results from linear optimization. Proteins: Structure, Function, and Bioinformatics, 41, 40–46 (2000)

    Article  Google Scholar 

  18. Tobi, D., Shafran, G., Linial, N., Elber, R.: On the design and analysis of protein folding potentials. Proteins: Structure, Function, and Bioinformatics, 40, 71–85 (2000)

    Article  Google Scholar 

  19. Loose, C., Kiepeis, J.L., Floudas, C.A.: A new pairwise folding potential based on improved decoy generation and side chain packing. Proteins: Structure, Function, and Bioinformatics, 54, 303–314 (2004)

    Article  Google Scholar 

  20. CPLEX: Using the CPLEX Callable Library. ILOG, Inc. Mountain View, California (1997)

    Google Scholar 

  21. Sherali, H.D., Adams, W.P.: A Reformulation Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic Publishing, Boston (1999)

    MATH  Google Scholar 

  22. Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  23. Kiepeis, J.L., Schafroth, H.D., Westerberg, K.M., Floudas, C.A.: Deterministic global optimization and ab initio approaches for the structure prediction of polypeptides, dynamics of protein folding and proteinprotein interaction. In: Friesner, R.A. (ed) Advances in Chemical Physics. Wiley, New York (2002)

    Google Scholar 

  24. Kiepeis, J.L., Floudas, C.A., Morikis, D., Lambris, J.D.: Predicting peptide structures using NMR data and deterministic global optimization. J. Comput. Chem., 20, 1354–1370 (1999)

    Article  Google Scholar 

  25. Kiepeis, J.L., Floudas, C.A.: Ab initio tertiary structure prediction of proteins. J. Global. Optim., 25, 113–140 (2003)

    Article  MathSciNet  Google Scholar 

  26. Némethy, G., Gibson, K.D., Palmer, K.A., Yoon, C.N., Paterlini, G., Zagari, A., Rumsey, S., Scheraga, H.A.: Energy parameters in polypeptides. 10. J. Phys. Chem., 96, 6472–6484 (1992)

    Article  Google Scholar 

  27. Floudas, C. A.: Deterministic Global Optimization: Theory, Methods and Applications. Kluwer Academic Publishers, New York (2000)

    Google Scholar 

  28. Adjiman, C., Androulakis, I., Floudas, C.A.: A global optimization method, aBB, for general twice-differential constrained NPLs-1. Theoretical advances. Computers Chem. Engng., 22, 1137–1158 (1998)

    Article  Google Scholar 

  29. Adjiman, C., Androulakis, I., Floudas, C.A.: A global optimization method, aBB, for general twice-differentiable constrained NLPs-II. Implementation and computational results. Computers Chem. Engng., 22, 1159–1179 (1998)

    Article  Google Scholar 

  30. Adjiman, C., Androulakis, I., Floudas, C.A.: Global optimization of mixedinteger nonlinear problems. AIChE Journal, 46, 1769–1797 (2000)

    Article  Google Scholar 

  31. Sahu, A., Lambris, J. D.: Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol. Rev., 180, 35–48 (2001)

    Article  Google Scholar 

  32. Sahu, A., Kay, B.K., Lambris, J.D.: Inhibition of human complement by a C3-binding peptide isolated from a phage displayed random peptide library. J. Immunol., 157, 884–891 (1996)

    Google Scholar 

  33. Sahu, A., Soulika, A.M., Morikis, D., Spruce, L., Moore, W.T., Lambris, J.D.: Binding kinetics, structure activity relationship and biotransformation of the complement inhibitor compstatin. J. Immunol, 165, 2491–2499 (2000)

    Google Scholar 

  34. Morikis, D., Roy, M., Sahu, A., Torganis, A., Jennings, P.A., Tsokos, G.C., Lambris, J.D.: The structural basis of compstatin activity examined by structure-function-based design of peptide analogs and NMR. J. Biol. Chem., 277, 14942–14953 (2002)

    Article  Google Scholar 

  35. Soulika, A.M., Morikis, D., Sarias, M.R., Roy, M., Spruce, L., Sahu, A., Lambris, J.D.: Studies of structure-activity relations of complement inhibitor compstatin. J. Immunology, 170, 1881–1890 (2003)

    Google Scholar 

  36. Soulika, A.M., Khan, M.M., Hattori, T., Bowen, F.W., Richardson, B.A., Hack, C.E., Sahu, A., Edmunds, L.H., Lambris, J.D.: Inhibition of heparin/protamine complex-induced complement activation by comsptatin in baboons. Clin. Immunology, 96, 212–221 (2000)

    Article  Google Scholar 

  37. Nilsson, B., Larsson, R., Hong, J., Elgue, G., Ekdahl, K.N., Sahu, A., Lambris, J.D.: Compstatin inhibits complement and cellular activation in whole blood in two models of extracorporeal circulation. Blood, 92, 1661–1667 (1998)

    Google Scholar 

  38. Fiane, A.E., Mollnes, T.E., Videm, V., Hovig, T., Hogasen, K., Mellbye, O.J., Spruce, L., Moore, W.T., Sahu, A., Lambris, J.D.: Compstatin, a peptide inhibitor of C3, prolongs survival of ex-vivo perfused pig xenografts. Xenotransplantation, 6, 52–65 (1999)

    Article  Google Scholar 

  39. Mollnes, T.E., Brekke, O.L., Fung, M., Fure, H., Christiansen, D., Bergseth, G., Videm, V., Lappegard, K.T., Kohl, J., Lambris, J.D.: Essential role of the C5a receptor in E coli-induced oxidative burst and phagocytosis revealed by a novel lepirudin-based human whole blood model of in animation. Blood, 100, 1869–1877 (2002)

    Google Scholar 

  40. Klegeris, A., Singh, E.A., McGeer, P.L.: Effects of c-reactive protein and pentosan polysulphate on human complement activation. Immunology, 106, 381–388 (2002)

    Article  Google Scholar 

  41. Sahu, A., Morikis, D., Lambris, J.D.: Compstatin, a peptide inhibitor of complement, exhibits species-specific binging to complement component c3. Mol. Immunology, 39, 557–566 (2003)

    Article  Google Scholar 

  42. Gordon, B.B., Horn, G.K., Mayo, S.L., Pierce, N.A.: Exact rotamer optimization for protein design. J. Comput. Chem., 24, 232–243 (2003)

    Article  Google Scholar 

  43. Pierce, N.L., Spriet, J.A., Desmet, J., Mayo, S.L.: Conformational splitting: a more powerful criterion for dead-end elimination. J. Comput. Chem., 21, 999–1009 (2000)

    Article  Google Scholar 

  44. Zou, J.M., Saven, J.G.: Statistical theory of combinatorial libraries of folding proteins: energetic discrimination of a target structure. J. Mol. Bio., 296, 281–294 (2000)

    Article  Google Scholar 

  45. Kuhlman, B., O’Neill, J.W., Kim, D.E., Zhang, K.Y.J., Baker, D.: Accurate computer-based design of a new backbone conformation in the second turn of protein 1. J. Mol. Bio., 315, 471–477 (2002)

    Article  Google Scholar 

  46. Kuhlman, B., Dantae, G., Ireton, G.C., Verani, G., Stoddard, B., Baker, D.: Design of a novel globular protein fold with atomic-level accuracy. Science, 302, 1364–1368 (2003)

    Article  Google Scholar 

  47. Kuhlman, B., Baker, D.: Native Protein Sequences Are Close to Optimal for Their Structures. Proc. Natl. Acad. Sci. USA, 97, 10383–10388 (2000)

    Article  Google Scholar 

  48. Dantas, G., Kuhlman, B., Callender, D., Wong, M., Baker, D.: A large scale test of computational protein design: folding and stability of nine completely redesigned globular proteins. J. Mol. Biol., 332, 449–460 (2003)

    Article  Google Scholar 

  49. Watters, A.L., Baker, D.: Searching for folded proteins in vitro and in silico. Eur. J. Biochem., 271, 1615–1622 (2004)

    Article  Google Scholar 

  50. Kuhlman, B., Baker, D.: Exploring folding free energy landscapes using computational protein design. Current Opinion in Structural Biology, 14, 89–95 (2004)

    Article  Google Scholar 

  51. Kortemme, T., Baker, D.: Computational design of protein-protein interactions. Current Opinion in Chemical Biology, 8, 91–97 (2004)

    Article  Google Scholar 

  52. Benson, D.E., Wisz, M.S., Hellinga, H.W.: Rational design of nascent metalloenzymes. Proc. Natl. Acad. Sci. USA, 97, 6292–6297 (2000)

    Article  Google Scholar 

  53. Goldstein, R.F.: Effcient rotamer elimination applied to protein sidechains and related spin glasses. Biophysics Journal, 66, 1335–1340 (1994)

    Article  Google Scholar 

  54. Looger, L.L., Dwyer, M.W., Smith, J.J., Hellinga, H.W.: Computational design of receptor and sensor proteins with novel functions. Nature, 423, 185–190 (2003)

    Article  Google Scholar 

  55. Richards, F.M., Hellinga, H.W.: Optimal sequence selection in proteins of known structure by simulated evolution. Proc. Natl. Acad. Sci. USA, 91, 5803–5807 (1994)

    Article  Google Scholar 

  56. Richards, F.M., Hellinga, H.W.: Construction of new ligand binding sites in proteins of known structure. I. Computer-aided modeling of sites with predefined geometry. J. Mol. Biol., 222, 763–785 (1991)

    Article  Google Scholar 

  57. Richards, F.M., Caradonna, J.P., Hellinga, H.W.: Construction of new ligand binding sites in proteins of known structure. II. Grafting of a buried transition metal binding site into Escherichia coli thioredoxin. J. Mol. Biol., 222, 787–803 (1991)

    Article  Google Scholar 

  58. Yang, W., Jones, L.M., Isley, L., Ye, Y., Lee, H-W., Wilkins, A., Liu, Z.R., Hellinga, H.W., Malchow, R., Ghazi, M., Yang, J.J.: Rational design of a calcium-binding protein. J. Am. Chem. Soc., 125, 6165–6171 (2003)

    Article  Google Scholar 

  59. Kraemer-Pecore, C.M., Wollacott, A.M., Desjarlais, J.R.: Computational protein design. Current Opinion in Chemical Biology, 5, 690–695 (2001)

    Article  Google Scholar 

  60. Kraemer-Pecore, C.M., Lecomte, J.T., Desjarlais, J.R.: A de novo redesign of the ww domain. Protein Science., 12, 2194–2205 (2003)

    Article  Google Scholar 

  61. Lim, W.A., Hodel, A., Sauer, R.T., Richards, F.M.: The crystal structure of a mutant protein with altered but improved hydrophobic core packing. Proc. Natl. Acad. Sci. USA, 91, 423–427 (1994)

    Article  Google Scholar 

  62. Ember, J.A., Johansen, N.L., Hugli, T.E.: Designing synthetic superagonists of c3a anaphylatoxin. Biochemistry, 30, 3603–3612 (1991)

    Article  Google Scholar 

  63. Dahiyat, B.I., Mayo, S.L.: Protein design automation. Protein Science, 5, 895–903 (1996)

    Article  Google Scholar 

  64. Su, A., Mayo, S.L.: Coupling backbone exibility and amino acid sequence selection in protein design. Protein Science, 6, 1701–1707 (1997)

    Google Scholar 

  65. Malakauskas, S.M., Mayo, S.L.: Design, structure, and stability of a hyperthermophilic protein variant. Nat. Struct. Biol., 5, 470–475 (1998)

    Article  Google Scholar 

  66. Shimaoka, M., Shifman, J.M., Jing, H., Takagi, L., Mayo, S.L., Springer, T.A.: Computational design of an intergrin I domain stabilized in the open high affinity conformation. Nat. Struct. Biol., 7, 674–678 (2000)

    Article  Google Scholar 

  67. Mooers, B.H.M., Datta, D., Baase, W.A., Zollars, E.S., Mayo, S.L., Matthews, B.W.: Repacking the core of T4 lysozyme by automated design. J. Mol. Biol., 332, 741–756 (2003)

    Article  Google Scholar 

  68. Gillespie, B., Vu, D.M., Shah, P.S., Marshall, S.A., Dyer, R.B., Mayo, S.L., Plaxco, K.W.: NMR and temperature-jump measurements of de novo designed proteins demonstrate rapid folding in the absence of explicit selection for kinetics. J. Mol. Biol., 330, 813–819 (2003)

    Article  Google Scholar 

  69. Zhu, Y., Alonso, D.O., Maki, K., Huang, C.Y., Lahr, S.J., Daggett, V., Roder, H., DeGrado, W.F., Gai, F.: Ultrafast folding of alpha3D: a de novo designed three-helix bundle protein. Proc. Natl. Acad. Sci. USA, 100, 15486–15491 (2003)

    Article  Google Scholar 

  70. Kono, H., Saven, J.G.: Statistical theory for protein combinatorial libraries. Packing interactions, backbone exibility, and the sequence variability of a mainchain structure. J. Mol. Biol., 306, 607–628 (2001)

    Article  Google Scholar 

  71. Park, S., Yang, X., Saven, J.G.: Advances in computational protein design. Current Opinion in Structural Biology, 14, 487–494 (2004)

    Article  Google Scholar 

  72. Pokala, N., Handel, T.M.: Review: protein design-where we were, where we are, where we’re going. Journal of Structural Biology, 134, 269–281 (2001)

    Article  Google Scholar 

  73. Dill, K.A.: Dominant forces in protein folding. Biochemisty, 29, 7133–7155 (1990)

    Article  Google Scholar 

  74. Lee, C.: Predicting protein mutant energetics by self-consistent ensemble optimization. J. Mol. Biol., 236, 918–939 (1994)

    Article  Google Scholar 

  75. Kiepeis, J.L., Floudas, C.A.: Free energy calculations for peptides via deterministic global optimization. J. Chem. Phys., 110, 7491 (1999)

    Article  Google Scholar 

  76. Huber, R., Scholze, H., Paques, E.P., Deisenhofer, J.: Crystal structure analysis and molecular model of human c3a anaphylatoxin. Hoppe-Seylers Z Physiol Chemie, 361, 1389–1399 (1980)

    Google Scholar 

  77. Tuffery, P., Etchebest, C., Hazout, S., Lavery, R.: A new approach to the rapid determination of protein side chain conformations. J. Biomol. Struct. Dyn., 8, 1267–1289 (1991)

    Google Scholar 

  78. Wilson, C., Mace, J.E., Agard, D.A.: Computational method for the design of enzymes with altered substrate specificity. J. Mol. Biol., 220, 495–506 (1991)

    Article  Google Scholar 

  79. Farinas, E., Regan, L. The de novo design of a rubredoxin-like Fe site. Protein Science, 7, 1939–1946 (1998)

    Google Scholar 

  80. O. Prokopyev and H.X. Huang and P.M. Pardalos: Multi-quadratic Binary Programming. University of Florida, Research Report (2004)

    Google Scholar 

  81. Oral, M., Kettani, O.: A linearization procedure for quadratic and cubic mixedinteger problems. Operations Research, 40, S109–S116 (1990)

    MathSciNet  Google Scholar 

  82. Oral, M., Kettani, O.: Reformulating nonlinear combinatorial optimization problems for higher computational efficiency. European Journal of Operational Research, 58, 236–249 (1992)

    Article  MATH  Google Scholar 

  83. Pierce, N.A., Winfree, E.: Protein design is np-hard. Protein Engineering, 15, 779–782 (2002)

    Article  Google Scholar 

  84. Mallik, B., Katragadda, M., Spruce, L.A., Carafides, C., Tsokos, C.G., Morikis, D., Lambris, J.D.: Design and nmr characterization of active analogues of compstatin containing non-natural amino acids. Journal of Medicinal Chemistry, 48, 274–286 (2005)

    Article  Google Scholar 

  85. Fung, H.K., Rao, S., Floudas, C.A., Prokopyev, O., Pardalos, P.M., Rendl, F.: Computational comparison studies of quadratic assignment like formulations for the in silico sequence selection problem in de novo protein design. J. Comb. Optim., 10, 41–60 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  86. Saunders, C.T., Baker, D.: Recapitulation of protein family divergence using exible backbone protein design. J. Mol. Biol., 346, 631–644 (2005)

    Article  Google Scholar 

  87. Rajgaria, R., McAllister, S.R., Floudas, C.A.: Development of a novel high resolution calpha-calpha distance dependent force field using a high quality decoy set. Proteins: Structure, Function, and Bioinformatics, accepted for publication (2006)

    Google Scholar 

  88. Floudas, C.A.: Research challenges, opportunities and synergism in systems engineering and computational biology. AIChE Journal, 51, 1872–1884 (2005)

    Article  Google Scholar 

  89. Fung, H.K., Taylor, M.S., Floudas, C.A.: Novel formulation for the sequence selection problem in de novo protein design with exible templates. Optim. Methods & Software, in print (2006)

    Google Scholar 

  90. Guntert, P., Mumenthaler, C., Wuthrich, K.: Torsion angle dynamics for nmr structure calculation with the new program DYANA. J. Mol. Bio., 273, 283–298 (1997)

    Article  Google Scholar 

  91. Guntert, P.: Automated nmr structure calculation with CYANA. J. Mol. Bio., 278, 353–378 (2004)

    Google Scholar 

  92. Ponder, J.: TINKER, software tools for molecular design. 1998. Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine. St. Louis, MO. (1998)

    Google Scholar 

  93. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A 2nd generation force-field for the simulation Of proteins, nucleic-Acids, and organicmolecules. J. Am. Chem. Soc., 117, 5179–5197 (1995)

    Article  Google Scholar 

  94. Janssen, B.J.C., Huizinga, E.G., Raaijmakers, H.C.A., Roos, A., Daha, M.R., Nilsson-Ekdahl, K., Nilsson, B., Gros, P.: Structures of complement component C3 provide insights into the function and evolution of immunity. Nature, 437, 505–511 (2005)

    Article  Google Scholar 

  95. Dwyer, M.A., Looger, L.L., Hellinga, H.W.: Computational design of a biologically active enzyme. Science, 304, 1967–1971 (2004)

    Article  Google Scholar 

  96. Dwyer, M.A., Hellinga, H.W.: Periplasmic binding proteins: a versatile superfamily for protein engineering. Curr. Opin. Struc. Biol., 14, 495–504 (2004)

    Article  Google Scholar 

  97. Swift, J., Wehbi, W.A., Kelly, B.D., Stowell, X.F., Saven, J.G., Dmochowski, I.J.: Design of functional ferritin-like proteins with hydrophobic cavities. J. Am. Chem. Soc., 128, 6611–6619 (2006)

    Article  Google Scholar 

  98. Bunagan, M.R., Yang, X., Saven, J.G., Gai, F.: Ultrafast folding of a computationally designed trp-cage mutant: trp-cage. J. Phys. Chem. B., 110, 3759–3763 (2006)

    Article  Google Scholar 

  99. Cochran, F.V., Wu, S.P., Wang, W., Nanda, V., Saven, J.G., Therien, M.J., DeGrado, W.F.: Computational de novo design and characterization of a fourhelix bundle protein that selectively binds a nonbiological cofactor. J. Am. Chem. Soc., 127, 1346–1347 (2005)

    Article  Google Scholar 

  100. Sood, V.D., Baker, D.: Recapitulation and design of protein binding peptide structures and sequences. J. Mol. Biol., 357, 917–927 (2006)

    Article  Google Scholar 

  101. Korkegian, A., Black, M.E., Baker, D., Stoddard, B.L.: Computational thermostabilization of an enzyme. Science, 308, 857–860 (2005)

    Article  Google Scholar 

  102. Lazar, G.A., Marshall, S.A., Plecs, J.J., Mayo, S.L., Desjarlais, J.R.: Designing proteins for therapeutic applications. Curr. Opin. Struc. Biol., 13, 513–518 (2003)

    Article  Google Scholar 

  103. Shukla, U.J., Marino, H., Huang, P., Mayo, S.L., Love, J.J.: A designed protein interface that blocks fibril formation. J. Am. Chem. Soc., 126, 13914–13915 (2004)

    Article  Google Scholar 

  104. Song, G., Lazar, G.A., Kortemme, T., Shimaoka, M., Desjarlais, J.R., Baker, D., Springer, T.A. Rational design of intercellular adhesion molecule-1 (ICAM-1) variants for antagonizing integrin lymphocyte function-associated antigen-1-dependent adhesion. J. Biol. Chem., 281, 5042–5049 (2006)

    Article  Google Scholar 

  105. Glover, F.: Improved linear integer programming formulations of nonlinear integer problems. Management Science, 22, 455–460 (1975)

    MathSciNet  Google Scholar 

  106. Floudas, C.A., Fung, H.K.: Mathematical modeling and optimization methods for de novo protein design. In: Rigoutsos, I., Stephanopoulos, G. (eds) Systems Biology II. Oxford University, New York, NY (2006)

    Google Scholar 

  107. Chan, D.C., Fass, D., Berger, J.M., Kim, P.S.: Core structure of gp41 from the HIV envelope glycoprotein. Cell, 89, 263–273 (1997)

    Article  Google Scholar 

  108. Malashkevich, V.N., Chan, D.C., Chutkowski, C.T., Kim, P.S.: Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: conserved helical interactions underlie the broad inhibitory activity of gp41 peptides. Proc. Natl. Acad. Sci., 95, 9134–9139 (1998)

    Article  Google Scholar 

  109. Baritaki, S., Dittmar, M.T., Spandidos, D.A., Krambovitis, E.: In vitro inhibition of R5 HIV-1 infectivity by X4 V3-derived synthesis peptides. International Journal of Molecular Medicine, 16, 333–336 (2005)

    Google Scholar 

  110. Bagnarelli, P., Fiorelli, L., Vecchi, M., Monachetti, A., Menzo, S., Clementi, M.: Analysis of the functional relationship between v3 loop and gpl20 conext with regards to human immunodeficiency virus coreceptor usage using naturally selected sequences and different viral backbones. Virology, 307, 328–340 (2003)

    Article  Google Scholar 

  111. Galanakis, P.A., Spyroulias, G.A., Rizos, A., Samolis, P., Krambovitis, E. Conformational properties of HIV-1 gpl20/v3 immunogenic domains. Current Medicinal Chemistry, 12, 1551–1568 (2005)

    Article  Google Scholar 

  112. Huang, C., Tang, M., Zhang, M., Majeed, S., Montabana, E., Stanfield, R.L., Dimitrov, D.S., Korber, B., Sodroski, J., Wilson, I.A., Wyatt, R., Kwong, P.D.: Structure of a v3-containing HIV-1 gpl20 core. Science, 310, 1025–1028 (2005)

    Article  Google Scholar 

  113. Zolla-Pazner, S.: Identifying epitopes of HIV-1 that induce protective antibodies. Nature Reviews Immunology, 4, 199–210 (2004)

    Article  Google Scholar 

  114. Sia, S.K., Carr, P.A., Cochran, A.G., Malashkevich, V.N., Kim, P.S.: Short constrained peptides that inhibit HIV-1 entry. PNAS, 99, 14664–14669 (2002)

    Article  Google Scholar 

  115. Fung, H.K., Taylor, M.S., Floudas, C.A., Morikis, D., Lambris, J.D.: Redesigning complement 3a based on exible templates from both xray crystallography and molecular dynamics simulation. In preparation (2006)

    Google Scholar 

  116. Hoover, D.M., Rajashankar, K.R., Blumenthal, R., Puri, A., Oppenheim, J.J., Chertov, O., Lubkowski, J.: The structure of human β-defensin-2 shows evidence of higher order oligomeration. J. Biol. Chem., 275, 32911–32918 (2000)

    Article  Google Scholar 

  117. García, J.R.C., Florian, J., Schulz, S., Krause, A., Rodriguez-Jiménez, F.J., Forssmann, U., Adermann, K., Kluver, E., Vogelmeier, C., Becker, D., Hedrich, R., Forssmann, W.G., Bals, R.: Identification of a novel, multifunctional β - defensin (human β-defensin 3) with specific antimicrobial activity. Cell and Tissue Research, 306, 257–264 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Floudas, C.A., Fung, H.K., Morikis, D., Taylor, M.S., Zhang, L. (2008). Overcoming the Key Challenges in De Novo Protein Design: Enhancing Computational Efficiency and Incorporating True Backbone Flexibility. In: Mondaini, R.P., Pardalos, P.M. (eds) Mathematical Modelling of Biosystems. Applied Optimization, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76784-8_4

Download citation

Publish with us

Policies and ethics