Skip to main content

Sustained Performance of 10+ Teraflop/s in Simulation on Seismic Waves Using 507 Nodes of the Earth Simulator

  • Conference paper
High Performance Computing on Vector Systems 2007
  • 498 Accesses

Abstract

Earthquakes are very large scale ruptures inside the Earth and generate elastic waves, known as seismic waves, which propagate inside the Earth. We use a Spectral-Element Method implemented on the Earth Simulator in Japan to calculate seismic waves generated by recent large earthquakes. The spectral-element method is based on a weak formulation of the equations of motion and has both the flexibility of a finite-element method and the accuracy of a pseudospectral method. We perform numerical simulation of seismic wave propagation for a fully three-dimensional Earth model, which incorporates realistic 3D variations of Earth’s internal properties. The simulations are performed on 4056 processors, which require 507 out of 640 nodes of the Earth Simulator. We use a mesh with 206 million spectral-elements, for a total of 13.8 billion global integration grid points (i.e., almost 37 billion degrees of freedom). We show examples of simulations and demonstrate that the synthetic seismic waves computed by this numerical technique match with the observed seismic waves accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Komatitsch, D.: Spectral and spectral-element methods for the 2D and 3D elasto-dynamics equations in heterogeneous media, PhD thesis, Institut de Physique du Globe, Paris (1997)

    Google Scholar 

  2. Faccioli, E., F. Maggio, R. Paolucci, A. Quarteroni,: 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method. J. Seismol., 1, 237–251 (1997)

    Article  Google Scholar 

  3. Seriani, G.: 3-D large-scale wave propagation modeling by a spectral element method on a Cray T3E multiprocessor. Comput. Methods Appl. Mech. Engrg., 164, 235–247 (1998)

    Article  MATH  Google Scholar 

  4. Chaljub, E.: Numerical modelling of the propagation of seismic waves in spherical geometry: applications to global seismology. PhD thesis, Universit Paris VII Denis Diderot, Paris (2000)

    Google Scholar 

  5. Komatitsch, D., J. Tromp: Spectral-element simulations of global seismic wave propagation-I. Validation. Geophys. J. Int. 149, 390–412 (2002)

    Article  Google Scholar 

  6. Komatitsch, D, J. Tromp: Spectral-element simulations of global seismic wave propagation-II. 3-D models, oceans, rotation, and self-gravitation. Geophys. J. Int. 150, 303–318 (2002)

    Article  Google Scholar 

  7. Komatitsch, D., J. Ritsema, J. Tromp: The spectral-element method, Beowulf computing, and global seismology. Science, 298, 1737–1742 (2002)

    Article  Google Scholar 

  8. Ritsema, J., H. J. Van Heijst, J. H. Woodhouse: Complex shear velocity struc-ture imaged beneath Africa and Iceland. Science 286, 1925–1928 (1999)

    Article  Google Scholar 

  9. Bassin, C., G. Laske, G. Masters: The current limits of resolution for surface wave tomography in North America. EOS Trans. AGU. 81: Fall Meet. Suppl., Abstract S12A–03 (2000)

    Google Scholar 

  10. Dziewonski, A. M., D. L. Anderson: Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981)

    Article  Google Scholar 

  11. Dahlen, F. A., J. Tromp: Theoretical Global Seismology. Princeton University Press, Princeton (1998)

    Google Scholar 

  12. Komatitsch, D., J. P. Vilotte: The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am. 88, 368–392 (1998)

    Google Scholar 

  13. Komatitsch, D., J. Tromp: Introduction to the spectral-element method for 3-D seismic wave propagation. Geophys. J. Int. 139, 806–822 (1999)

    Article  Google Scholar 

  14. Tsuboi, S., D. Komatitsch, C. Ji, J. Tromp: Broadband modeling of the 2003 Denali fault earthquake on the Earth Simulator, Phys. Earth Planet. Int., 139, 305–312 (2003)

    Article  Google Scholar 

  15. Komatitsch, D., S. Tsuboi, C. Ji, J. Tromp: A 14.6 billion degrees of freedom, 5 teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator, Proceedings of the ACM/IEEE SC2003 confenrence, published on CD-ROM, (2003)

    Google Scholar 

  16. Tono, Y., T. Kunugi, Y. Fukao, S. Tsuboi, K. Kanjo, K. Kasahara: Mapping the 410-and 660-km discontinuities beneath the Japanese Islands. J. Geophys. Res., 110, B03307, doi:10.1029/2004JB003266 (2005)

    Article  Google Scholar 

  17. Zhang, J., X. Song, Y. Li, P. G. Richards, X. Sun, F. Waldhauser: Inner core differential motion confirmed by earthquake waveform doublets. Science, 309, 1357–1360 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsuboi, S. (2008). Sustained Performance of 10+ Teraflop/s in Simulation on Seismic Waves Using 507 Nodes of the Earth Simulator. In: Resch, M., Roller, S., Lammers, P., Furui, T., Galle, M., Bez, W. (eds) High Performance Computing on Vector Systems 2007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74384-2_1

Download citation

Publish with us

Policies and ethics