Skip to main content

New Gene Selection Method Using Gene Expression Programing Approach on Microarray Data Sets

  • Chapter
  • First Online:
Computer and Information Science (ICIS 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 791))

Included in the following conference series:

Abstract

Feature selection in machine learning and data mining facilitates the optimization of accuracy attained from the classifier with smallest number of features. The use of feature selection in microarray data mining is quite promising. However, usually it is hard to identify and select the feature genes from microarray data sets because multi-class categories and high dimensionality features exist in microarray data with a small-sized sample. Therefore, using good selection approaches to eliminate incomprehensibility and optimize prediction accuracy is becoming necessary, because it will help obtain genes that are relevant to sample classification when investigating large number of genes. In his paper, we propose a new feature selection method for microarray data sets. The method consists of the Gain Ratio (GR) and Improved Gene Expression Programming (IGEP) algorithms which are for gene filtering and feature selection respectively. Support Vector Machine (SVM) alongside with leave-one-out cross-validation (LOOCV) method was used to evaluate the proposed method on eight microarray datasets captured in the literature. The experimental results showed the effectiveness of the proposed method in selecting small number of features while generating higher classification accuracies compared with other existing feature selection approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chuang, L.-Y., Ke, C.-H., Yang, C.-H.: A hybrid both filter and wrapper feature selection method for microarray classification. arXiv:1612.08669 (2016)

  2. Guo, S., et al.: A centroid-based gene selection method for microarray data classification. J. Theor. Biol. 400, 32–41 (2016)

    Article  MathSciNet  Google Scholar 

  3. Dashtban, M., Balafar, M.: Gene selection for microarray cancer classification using a new evolutionary method employing artificial intelligence concepts. Genomics 109(2), 91–107 (2017)

    Article  Google Scholar 

  4. Yang, C.-H., Chuang, L.-Y., Yang, C.H.: IG-GA: a hybrid filter/wrapper method for feature selection of microarray data. J. Med. Biol. Eng. 30(1), 23–28 (2010)

    Google Scholar 

  5. Chinnaswamy, A., Srinivasan, R.: Hybrid feature selection using correlation coefficient and particle swarm optimization on microarray gene expression data. In: Innovations in Bio-Inspired Computing and Applications, pp. 229–239. Springer (2016)

    Google Scholar 

  6. Algamal, Z.: An efficient gene selection method for high-dimensional microarray data based on sparse logistic regression. Electron. J. Appl. Stat. Anal. 10(1), 242–256 (2017)

    MathSciNet  Google Scholar 

  7. Lu, H., et al.: A hybrid feature selection algorithm for gene expression data classification. Neurocomputing (2017)

    Google Scholar 

  8. Pino Angulo, A.: Gene selection for microarray cancer data classification by a novel rule-based algorithm. Information 9(1), 6 (2018)

    Article  Google Scholar 

  9. Jain, I., Jain, V.K., Jain, R.: Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification. Appl. Soft Comput. 62, 203–215 (2018)

    Article  Google Scholar 

  10. Cheng, Q., Zhou, H., Cheng, J.: The fisher-markov selector: fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 33(6), 1217–1233 (2011)

    Article  Google Scholar 

  11. Chuang, L.-Y., Yang, C.-H., Yang, C.-H.: Tabu search and binary particle swarm optimization for feature selection using microarray data. J. Comput. Biol. 16(12), 1689–1703 (2009)

    Article  MathSciNet  Google Scholar 

  12. Ferreira, C.: Gene expression programming in problem solving. In: Soft Computing and Industry, pp. 635–653. Springer (2002)

    Google Scholar 

  13. Azzawi, H., Hou, J., Xiang, Y., Alanni, R.: Lung cancer prediction from microarray data by gene expression programming. IET Syst. Biol. (2016)

    Google Scholar 

  14. Yu, Z., Lu, H., Si, H., Liu, S., Li, X.: A highly efficient gene expression programming (GEP) model for auxiliary diagnosis of small cell lung cancer. PLoS ONE 10(5), e0125517 (2015)

    Article  Google Scholar 

  15. Peng, Y.Z., Yuan, C.A., Qin, X., Huang, J.T., Shi, Y.B.: An improved Gene Expression Programming approach for symbolic regression problems. Neurocomputing 137, 293–301 (2014)

    Article  Google Scholar 

  16. Kusy, M., Obrzut, B., Kluska, J.: Application of gene expression programming and neural networks to predict adverse events of radical hysterectomy in cervical cancer patients. Med. Biol. Eng. Comput. 51(12), 1357–1365 (2013)

    Article  Google Scholar 

  17. Yu, Z., Chen, X.Z., Cui, Si, H.Z.: Prediction of lung cancer based on serum biomarkers by gene expression programming methods. Asian Pac. J. Cancer Prev. 15(21), 9367–9373 (2014)

    Article  Google Scholar 

  18. Alanni, R., Hou, J., Abdu-aljabar, R., Xiang, X.: Prediction of NSCLC recurrence from microarray data with GEP. IET Syst. Biol. 11(3), 77–85 (2017)

    Article  Google Scholar 

  19. Azzawi, H., Hou, J., Alanni, R., Xiang, Y.: Multiclass lung cancer diagnosis by gene expression programming and microarray datasets. In: International Conference on Advanced Data Mining and Applications. Springer (2017)

    Google Scholar 

  20. Tan, P.L., Tan, S.C., Lim, C.P., Khor, S.E.: A modified two-stage SVM-RFE model for cancer classification using microarray data. In: International Conference on Neural Information Processing. Springer (2011)

    Google Scholar 

  21. Martínez, J., Iglesias, C., Matías, J.M., Taboada, J.M., Araújo, M.: Solving the slate tile classification problem using a DAGSVM multiclassification algorithm based on SVM binary classifiers with a one-versus-all approach. Appl. Math. Comput. 230, 464–472 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Afshar, H.L., Ahmadi, M., Roudbari, M., Sadoughi F.: Prediction of breast cancer survival through knowledge discovery in databases. Glob. J. Health Sci. 7(4), 392 (2015)

    Google Scholar 

  23. Le Thi, H.A., Nguyen, M.C.: DCA based algorithms for feature selection in multi-class support vector machine. Ann. Oper. Res. 249(1), 273–300 (2017)

    Article  MathSciNet  Google Scholar 

  24. Rajaguru, H., Ganesan, K., Bojan, V.K.: Earlier detection of cancer regions from MR image features and SVM classifiers. Int. J. Imaging Syst. Technol. 26(3), 196–208 (2016)

    Article  Google Scholar 

  25. Priyadarsini, R.P., Valarmathi, M., Sivakumari, S.: Gain ratio based feature selection method for privacy preservation. ICTACT J. Soft Comput. 1(04), 20011 (2011)

    Google Scholar 

  26. Karegowda, A.G., Manjunath, A., Jayaram, M.: Comparative study of attribute selection using gain ratio and correlation based feature selection. Int. J. Inf. Technol. Knowl. Manage. 2(2), 271–277 (2010)

    Google Scholar 

  27. Yang, P., Zhou, B., Zhang, Z.: A multi-filter enhanced genetic ensemble system for gene selection and sample classification of microarray data. BMC Bioinform. 11(1), 1 (2010)

    Article  Google Scholar 

  28. Witten, I.H., et al.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann (2016)

    Google Scholar 

  29. Golberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, p. 102. Addison Wesley (1989)

    Google Scholar 

  30. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press (1992)

    Google Scholar 

  31. Hearst, M.A., et al.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998)

    Article  Google Scholar 

  32. Vanitha, C.D.A., Devaraj, D., Venkatesulu, M.: Gene expression data classification using support vector machine and mutual information-based gene selection. Procedia Comput. Sci. 47, 13–21 (2015)

    Article  Google Scholar 

  33. Su, A.I., Welsh, J.B., Sapinoso, L.M.: Molecular classification of human carcinomas by use of gene expression signatures. Can. Res. 61(20), 7388–7393 (2001)

    Google Scholar 

  34. Staunton, J.E., et al.: Chemosensitivity prediction by transcriptional profiling. Proc. Natl. Acad. Sci. 98(19), 10787–10792 (2001)

    Article  Google Scholar 

  35. Pomeroy, S.L., et al.: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415(6870), 436 (2002)

    Article  Google Scholar 

  36. Nutt, C.L., et al.: Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Can. Res. 63(7), 1602–1607 (2003)

    Google Scholar 

  37. Golub, T.R., Slonim, D.K., Tamayo, P.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)

    Article  Google Scholar 

  38. Armstrong, S.A., et al.: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30(1), 41 (2002)

    Article  Google Scholar 

  39. Bhattacharjee, A., Richards, W.G., Staunton, J.: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. 98(24), 13790–13795 (2001)

    Article  Google Scholar 

  40. Singh, D., et al.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2), 203–209 (2002)

    Article  Google Scholar 

  41. Moraglio, A., Di Chio, C., Poli, R.: Geometric particle swarm optimisation. In: European Conference on Genetic Programming. Springer (2007)

    Google Scholar 

  42. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA (1989)

    MATH  Google Scholar 

  43. Karaboga, D., Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: International Fuzzy Systems Association World Congress. Springer (2007)

    Google Scholar 

  44. Thomas, J.: GEP4J (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russul Alanni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alanni, R., Hou, J., Azzawi, H., Xiang, Y. (2019). New Gene Selection Method Using Gene Expression Programing Approach on Microarray Data Sets. In: Lee, R. (eds) Computer and Information Science. ICIS 2018. Studies in Computational Intelligence, vol 791. Springer, Cham. https://doi.org/10.1007/978-3-319-98693-7_2

Download citation

Publish with us

Policies and ethics