Skip to main content

Context Free Band Reduction Using a Convolutional Neural Network

  • Conference paper
  • First Online:
Book cover Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2018)

Abstract

In this paper, we present a method for content-free band selection and reduction for hyperspectral imaging. Here, we reconstruct the spectral image irradiance in the wild making use of a reduced set of wavelength-indexed bands at input. To this end, we use of a deep neural net which employs a learnt sparse input connection map to select relevant bands at input. Thus, the network can be viewed as learning a non-linear, locally supported generic transformation between a subset of input bands at a pixel neighbourhood and the scene irradiance of the central pixel at output. To obtain the sparse connection map we employ a variant of the Levenberg-Marquardt algorithm (LMA) on manifolds which is devoid of the damping factor often used in LMA approaches. We show results on band selection and illustrate the utility of the connection map recovered by our approach for spectral reconstruction using a number of alternatives on widely available datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The dataset can be downloaded from: http://www.comp.nus.edu.sg/~whitebal/spectral_reconstruction/.

  2. 2.

    Downloadable at: http://www.scyllarus.com.

References

  1. Akgun, T., Altunbasak, Y., Mersereau, R.M.: Super-resolution reconstruction of hyperspectral images. IEEE Trans. Image Process. 14(11), 1860–1875 (2005)

    Article  Google Scholar 

  2. Alvarez, J.M., Salzmann, M.: Learning the number of neurons in deep networks. In: NIPS (2016)

    Google Scholar 

  3. Cariou, C., Chehdi, K., Moan, S.L.: Bandclust: an unsupervised band reduction method for hyperspectral remote sensing. IEEE Geosci. Remote Sens. Lett. 8(3), 565–569 (2011)

    Article  Google Scholar 

  4. Chang, J.Y., Lee, K.M., Lee, S.U.: Shape from shading using graph cuts. In: Proceedings of the International Conference on Image Processing (2003)

    Google Scholar 

  5. Ejaz, T., Horiuchi, T., Ohashi, G., Shimodaira, Y.: Development of a camera system for the acquisition of high-fidelity colors. IEICE Trans. Electron. E–89C(10), 1441–1447 (2006)

    Article  Google Scholar 

  6. Finlayson, G.D., Drew, M.S.: The maximum ignorance assumption with positivity. In: Proceedings of the IS&T/SID 4th Color Imaging Conference, pp. 202–204 (1996)

    Google Scholar 

  7. Gu, L., Huynh, C.P., Robles-Kelly, A.: Material-specific user colour profiles from imaging spectroscopy data. In: IEEE International Conference on Computer Vision (2011)

    Google Scholar 

  8. Gu, L., Robles-Kelly, A., Zhou, J.: Efficient estimation of reflectance parameters from imaging spectroscopy. IEEE Trans. Image Process. 99, 1 (2013)

    Google Scholar 

  9. Guo, B., Gunn, S.R., Damper, R.I., Nelson, J.D.B.: Band selection for hyperspectral image classification using mutual information. IEEE Geosci. Remote Sens. Lett. 3(4), 522–526 (2006)

    Article  Google Scholar 

  10. Judd, D.B.: Report of U.S. secretariat committee on colorimetry and artificial daylight, p. 11 (1951)

    Google Scholar 

  11. Kawakami, R., Zhao, H., Tan, R., Ikeuchi, K.: Camera spectral sensitivity and white balance estimation from sky images. Int. J. Comput. Vis. 105(3), 187–204 (2013)

    Article  Google Scholar 

  12. Koray, K., Sermanet, P., Boureau, Y.L., Gregor, K., Mathieu, M., LeCun, Y.: Learning convolutional feature hierarchies for visual recognition. In: NIPS, pp. 1090–1098 (2010)

    Google Scholar 

  13. Longere, P., Brainard, D.H.: Simulation of digital camera images from hyperspectral input. In: van den Branden Lambrecht, C. (ed.) Vision Models and Applications to Image and Video Processing, pp. 123–150. Kluwer (2001)

    Google Scholar 

  14. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  Google Scholar 

  15. Nguyen, R.M.H., Prasad, D.K., Brown, M.S.: Raw-to-raw: mapping between image sensor color responses. In: Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  16. Nguyen, R.M.H., Prasad, D.K., Brown, M.S.: Training-based spectral reconstruction from a single RGB image. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 186–201. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_13

    Chapter  Google Scholar 

  17. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Heidelberg (2000). https://doi.org/10.1007/978-0-387-40065-5

    Book  MATH  Google Scholar 

  18. Robles-Kelly, A.: Single image spectral reconstruction for multimedia applications. In: ACM International Conference on Multimedia, pp. 251–260 (2015)

    Google Scholar 

  19. Sharma, G., Vrhel, M.J., Trussell, H.J.: Color imaging for multimedia. Proc. IEEE 86(6), 1088–1108 (1998)

    Article  Google Scholar 

  20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  21. van de Weijer, J., Gevers, T., Gijsenij, A.: Edge-based color constancy. IEEE Trans. Image Process. 16(9), 2207–2214 (2007)

    Article  MathSciNet  Google Scholar 

  22. Zare, A., Gader, P.: Hyperspectral band selection and endmember detection using sparsity promoting priors. IEEE Geosci. Remote Sens. Lett. 5(2), 256–260 (2008)

    Article  Google Scholar 

  23. Zhao, H., Robles-Kelly, A., Zhou, J., Lu, J., Yang, J.: Graph attribute embedding via riemannian submersion learning. Comput. Vis. Image Underst. 115(7), 962–975 (2011)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank NVIDIA for providing the GPUs used to obtain the results shown in this paper through their Academic grant programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Robles-Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, R., Robles-Kelly, A., Álvarez, J. (2018). Context Free Band Reduction Using a Convolutional Neural Network. In: Bai, X., Hancock, E., Ho, T., Wilson, R., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2018. Lecture Notes in Computer Science(), vol 11004. Springer, Cham. https://doi.org/10.1007/978-3-319-97785-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97785-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97784-3

  • Online ISBN: 978-3-319-97785-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics