Skip to main content

Target Learning: A Novel Framework to Mine Significant Dependencies for Unlabeled Data

  • Conference paper
  • First Online:
Book cover Advances in Knowledge Discovery and Data Mining (PAKDD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10937))

Included in the following conference series:

Abstract

To mine significant dependencies among predictiveattributes, much work has been carried out to learn Bayesian netwrok classifiers (BNC\(_\mathcal {T}\)s) from labeled training data set \(\mathcal {T}\). However, if BNC\(_\mathcal {T}\) does not capture the “right” dependencies that would be most relevant to unlabeled testing instance, that will result in performance degradation. To address this issue we propose a novel framework, called target learning, that takes each unlabeled testing instance as a target and builds an “unstable” Bayesian model BNC\(_\mathcal {P}\) for it. To make BNC\(_\mathcal {P}\) and BNC\(_\mathcal {T}\) complementary to each other and work efficiently in combination, the same learning strategy is applied to build them. Experimental comparison on 32 large data sets from UCI machine learning repository shows that, for BNCs with different degrees of dependence target learning always helps improve the generalization performance with minimal additional computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Artif. Intell. 48, 117–124 (1991). https://doi.org/10.1016/0004-3702(91)90084-w

    Article  Google Scholar 

  2. Lewis, D.D.: Naive (Bayes) at forty: the independence assumption in information retrieval. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 4–15. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026666

    Chapter  Google Scholar 

  3. Langley, P.: Induction of recursive Bayesian classifiers. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667, pp. 153–164. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56602-3_134

    Chapter  Google Scholar 

  4. Jiang. S., Harry, Z.: Full Bayesian network classifiers. In: 23rd International Conference on Machine Learning, Pittsburgh, Pennsylvania, pp. 897–904 (2006). https://doi.org/10.1145/1143844.1143957

  5. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997). https://doi.org/10.1002/9780470400531.eorms0099

    Article  MATH  Google Scholar 

  6. Sahami, M.: Learning limited dependence Bayesian classifiers. In: 2nd International Conference on Knowledge Discovery and Data Mining, Portland, United States, pp. 335–338 (1996). https://doi.org/10.1007/978-1-4471-0745-3_8

  7. Zheng, Z.J., Webb, G.I.: Lazy learning of Bayesian rules. Mach. Learn. 41, 53–84 (2000). https://doi.org/10.1007/978-1-4471-0745-3_8

    Article  Google Scholar 

  8. Martínez, A.M., Webb, G.I., Chen, S.L., Zaidi, N.A.: Scalable learning of Bayesian network classifiers. J. Mach. Learn. Res. 17, 1–30 (2016). https://doi.org/10.1145/1015330.1015339

    Article  MathSciNet  MATH  Google Scholar 

  9. Taheri, S., Mammadov, M.: Structure learning of Bayesian Networks using global optimization with applications in data classification. Optim. Lett. 9, 931–948 (2015). https://doi.org/10.1007/s11590-014-0803-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Triguero, I., García, S., Herrera, F.: Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study. Knowl. Inf. Syst. 42, 245–284 (2015). https://doi.org/10.1007/s10115-013-0706-y

    Article  Google Scholar 

  11. Nikos, F., Stamatis, K., Sotiris, K., Kyriakos, S.: Self-trained LMT for semisupervised learning. Comput. Intell. Neurosci. 2, 1–13 (2016). https://doi.org/10.1155/2016/3057481

    Article  Google Scholar 

  12. Didaci, L., Fumera, G., Roli, F.: Analysis of co-training algorithm with very small training sets. In: Gimel’farb, G., et al. (eds.) SSPR/SPR 2012. LNCS, vol. 7626. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34166-3_79

    Chapter  Google Scholar 

  13. Zhu, X.J.: Semi-supervised learning literature survey. Comput. Sci. 37, 63–77 (2008). https://doi.org/10.7551/mitpress/9780262033589.003.0001

    Article  Google Scholar 

  14. Shannon, C.E.: The Mathematical Theory of Communication. University of Illinois Press, Champaign (1949)

    MATH  Google Scholar 

  15. Park, S.H., Fürnkranz, J.: Efficient implementation of class-based decomposition schemes for Naive Bayes. Mach. Learn. 96, 295–309 (2014). https://doi.org/10.21275/v4i11.nov151091

    Article  MathSciNet  MATH  Google Scholar 

  16. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996). https://doi.org/10.1007/bf00058655

    Article  MathSciNet  MATH  Google Scholar 

  17. UCI repository of machine learning databases (1995). http://www.ics.uci.edu/mlearn/MLRepository.html

  18. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous valued attributes for classification learning. In: 5th International Joint Conference on Artificial Intelligence, France, Chambery, pp. 1022–1029 (1993). https://doi.org/10.1109/icmlc.2010.5581069

  19. Kohavi, R., Wolpert, D.: Bias plus variance decomposition for zero-one loss functions. In: 13th International Conference on Machine Learning, Bari, Italy, pp. 275–283 (1996). https://doi.org/10.1007/978-0-387-09823-4_37

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Chen, S., Mammadov, M. (2018). Target Learning: A Novel Framework to Mine Significant Dependencies for Unlabeled Data. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10937. Springer, Cham. https://doi.org/10.1007/978-3-319-93034-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93034-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93033-6

  • Online ISBN: 978-3-319-93034-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics