Skip to main content

Motor Fault Detection and Diagnosis Based on a Meta-cognitive Random Vector Functional Link Network

  • Chapter
  • First Online:

Abstract

Accurate prediction of faults before they occur is vital because the intricate, uncertain, and intercorrelated natures of industrial processes can lead to multiple component failures or to a complete shutdown of the overall prediction cycle. While the first principle-based fault detection approach demands significant expert knowledge and is component-specific, learning-based approaches offer a plausible alternative because of their learning capability of offline data. Learning-based fault detection and diagnosis still deserve in-depth investigation because current approaches must happen offline, are static, and must be supervised; this makes them hardly applicable for the live scenarios of industrial processes. This chapter proposes a novel approach using an evolving type-2 random vector functional link network, which combines the meta-cognitive learning concept with the random vector functional link theory. The efficacy of evolving type-2 random vector functional link networks was validated with an experimental study on diagnosing different fault conditions of induction motors – namely broken rotor bars, unbalanced voltages, stator winding faults, and eccentricity problems – using a laboratory-scale test rig. Our algorithm was compared with other prominent algorithms and was found to deliver state-of-the-art performance in terms of accuracy, simplicity, and scalability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Montanari, M., Peresada, S. M., Rossi, C., & Tilli, A. (2007). Speed sensorless control of induction motors based on a reduced-order adaptive observer. IEEE Transactions on Control Systems Technology, 15, 1049–1064.

    Article  Google Scholar 

  2. CusidÓ, J., Romeral, L., Ortega, J. A., Rosero, J. A., & Espinosa, A. G. (2008). Fault detection in induction machines using power spectral density in wavelet decomposition. IEEE Transactions on Industrial Electronics, 55, 633–643.

    Article  Google Scholar 

  3. Benbouzid, M. E. H. (2000). A review of induction motors signature analysis as a medium for faults detection. IEEE Transactions on Industrial Electronics, 47, 984–993.

    Article  Google Scholar 

  4. Toubakh, H., & Sayed-Mouchaweh, M. (2016). Hybrid dynamic classifier for drift-like fault diagnosis in a class of hybrid dynamic systems: Application to wind turbine converters. Neurocomputing, 171, 1496–1516.

    Article  Google Scholar 

  5. Traore, M., Duviella, E., & Lecoeuche, S. (2009). Comparison of two prognosis methods based on neuro fuzzy inference system and clustering neural network. IFAC Proceedings Volumes, 42, 1468–1473.

    Article  Google Scholar 

  6. Sayed-Mouchaweh, M., & Lughofer, E. (2012). Learning in non-stationary environments: Methods and applications. New York: Springer.

    Book  MATH  Google Scholar 

  7. Bangalore, P., & Tjernberg, L. B. (2015). An artificial neural network approach for early fault detection of gearbox bearings. IEEE Transactions on Smart Grid, 6, 980–987.

    Article  Google Scholar 

  8. Martin, T. (2005). Fuzzy sets in the fight against digital obesity. Fuzzy Sets and Systems, 156, 411–417.

    Article  MathSciNet  Google Scholar 

  9. López, V., del Río, S., Benítez, J. M., & Herrera, F. (2015). Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data. Fuzzy Sets and Systems, 258, 5–38.

    Article  MathSciNet  Google Scholar 

  10. Broomhead, D. S., & Lowe, D. (1988). Radial basis functions, multi-variable functional interpolation and adaptive networks. Royal Signals and Radar Establishment Malvern (UK).

    Google Scholar 

  11. Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13, 281–305.

    MathSciNet  MATH  Google Scholar 

  12. Chen, C. P., & Wan, J. Z. (1999). A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to time-series prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 29, 62–72.

    Article  Google Scholar 

  13. Rong, H.-J., Ong, Y.-S., Tan, A.-H., & Zhu, Z. (2008). A fast pruned-extreme learning machine for classification problem. Neurocomputing, 72, 359–366.

    Article  Google Scholar 

  14. Deng, Z., Choi, K.-S., Cao, L., & Wang, S. (2014). T2fela: Type-2 fuzzy extreme learning algorithm for fast training of interval type-2 TSK fuzzy logic system. IEEE Transactions on Neural Networks and Learning Systems, 25, 664–676.

    Article  Google Scholar 

  15. Feng, G., Huang, G.-B., Lin, Q., & Gay, R. (2009). Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Transactions on Neural Networks, 20, 1352–1357.

    Article  Google Scholar 

  16. Mirza, B., Lin, Z., & Liu, N. (2015). Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift. Neurocomputing, 149, 316–329.

    Article  Google Scholar 

  17. Pratama, M., Zhang, G., Er, M. J., & Anavatti, S. (2017). An incremental type-2 meta-cognitive extreme learning machine. IEEE Transactions on Cybernetics, 47, 339–353.

    Google Scholar 

  18. Subramanian, K., Suresh, S., & Sundararajan, N. (2013). A metacognitive neuro-fuzzy inference system (McFIS) for sequential classification problems. IEEE Transactions on Fuzzy Systems, 21, 1080–1095.

    Article  Google Scholar 

  19. Millan-Almaraz, J. R., Romero-Troncoso, R., Contreras-Medina, L. M., & Garcia-Perez, A. (2008). Embedded FPGA based induction motor monitoring system with speed drive fed using multiple wavelet analysis. In international symposium on industrial embedded systems, 2008. SIES 2008 (pp. 215–220).

    Google Scholar 

  20. Seera, M., Lim, C. P., Ishak, D., & Singh, H. (2012). Fault detection and diagnosis of induction motors using motor current signature analysis and a hybrid FMM–CART model. IEEE Transactions on Neural Networks and Learning Systems, 23, 97–108.

    Article  Google Scholar 

  21. Douglas, H., Pillay, P., & Ziarani, A. (2005). Broken rotor bar detection in induction machines with transient operating speeds. IEEE Transactions on Energy Conversion, 20, 135–141.

    Article  Google Scholar 

  22. Penman, J., Sedding, H., Lloyd, B., & Fink, W. (1994). Detection and location of interturn short circuits in the stator windings of operating motors. IEEE Transactions on Energy Conversion, 9, 652–658.

    Article  Google Scholar 

  23. Cameron, J., Thomson, W., & Dow, A. (1986). Vibration and current monitoring for detecting airgap eccentricity in large induction motors. In IEEE proceedings B (electric power applications) (pp. 155–163).

    Google Scholar 

  24. Dorrell, D. G., Thomson, W. T., & Roach, S. (1997). Analysis of airgap flux, current, and vibration signals as a function of the combination of static and dynamic airgap eccentricity in 3-phase induction motors. IEEE Transactions on Industry Applications, 33, 24–34.

    Article  Google Scholar 

  25. Rodríguez, P. V. J., Negrea, M., & Arkkio, A. (2008). A simplified scheme for induction motor condition monitoring. Mechanical Systems and Signal Processing, 22, 1216–1236.

    Article  Google Scholar 

  26. Arabacı, H., & Bilgin, O. (2010). Automatic detection and classification of rotor cage faults in squirrel cage induction motor. Neural Computing and Applications, 19, 713–723.

    Article  Google Scholar 

  27. Lau, E. C., & Ngan, H. (2010). Detection of motor bearing outer raceway defect by wavelet packet transformed motor current signature analysis. IEEE Transactions on Instrumentation and Measurement, 59, 2683–2690.

    Article  Google Scholar 

  28. Abe, S., & Lan, M.-S. (1995). A method for fuzzy rules extraction directly from numerical data and its application to pattern classification. IEEE Transactions on Fuzzy Systems, 3, 18–28.

    Article  Google Scholar 

  29. Palmero, G. S., Santamaria, J. J., de la Torre, E. M., & González, J. P. (2005). Fault detection and fuzzy rule extraction in AC motors by a neuro-fuzzy ART-based system. Engineering Applications of Artificial Intelligence, 18, 867–874.

    Article  Google Scholar 

  30. Yang, B.-S., Oh, M.-S., & Tan, A. C. C. (2009). Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference. Expert Systems with Applications, 36, 1840–1849.

    Article  Google Scholar 

  31. Sii, H. S., Ruxton, T., & Wang, J. (2001). A fuzzy-logic-based approach to qualitative safety modelling for marine systems. Reliability Engineering & System Safety, 73, 19–34.

    Article  Google Scholar 

  32. Brotherton, T., Chadderdon, G., & Grabill, P. (1999). Automated rule extraction for engine vibration analysis. In 1999 IEEE aerospace conference proceedings (pp. 29–38).

    Google Scholar 

  33. Sadeghian, A., Ye, Z., & Wu, B. (2009). Online detection of broken rotor bars in induction motors by wavelet packet decomposition and artificial neural networks. IEEE Transactions on Instrumentation and Measurement, 58, 2253–2263.

    Article  Google Scholar 

  34. Lee, S.-h., Wang, Y.-q., & Song, J.-i. (2010). Fourier and wavelet transformations application to fault detection of induction motor with stator current. Journal of Central South University of Technology, 17, 93–101.

    Article  Google Scholar 

  35. Liu, X., Ma, L., & Mathew, J. (2009). Machinery fault diagnosis based on fuzzy measure and fuzzy integral data fusion techniques. Mechanical Systems and Signal Processing, 23, 690–700.

    Article  Google Scholar 

  36. Ondel, O., Boutleux, E., Clerc, G., & Blanco, E. (2008). FDI based on pattern recognition using Kalman prediction: Application to an induction machine. Engineering Applications of Artificial Intelligence, 21, 961–973.

    Article  Google Scholar 

  37. Adjallah, K. H., Han, T., Yang, B.-S., & Yin, Z.-J. (2007). Feature-based fault diagnosis system of induction motors using vibration signal. Journal of Quality in Maintenance Engineering, 13, 163–175.

    Article  Google Scholar 

  38. Jang, J.-S. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23, 665–685.

    Article  Google Scholar 

  39. Patra, J. C., & Kot, A. C. (2002). Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 32, 505–511.

    Article  Google Scholar 

  40. Savitha, R., Suresh, S., & Kim, H. J. (2014). A meta-cognitive learning algorithm for an extreme learning machine classifier. Cognitive Computation, 6, 253–263.

    Article  Google Scholar 

  41. Lughofer, E., & Buchtala, O. (2013). Reliable all-pairs evolving fuzzy classifiers. IEEE Transactions on Fuzzy Systems, 21, 625–641.

    Article  Google Scholar 

  42. Pratama, M., Er, M. J., Anavatti, S. G., Lughofer, E., Wang, N., & Arifin, I. (2014). A novel meta-cognitive-based scaffolding classifier to sequential non-stationary classification problems. In 2014 IEEE international conference on fuzzy systems (FUZZ-IEEE) (pp. 369–376).

    Google Scholar 

  43. Pratama, M., Anavatti, S. G., & Lughofer, E. (2014). GENEFIS: Toward an effective localist network. IEEE Transactions on Fuzzy Systems, 22, 547–562.

    Article  Google Scholar 

  44. Han, H., Wu, X.-L., & Qiao, J.-F. (2014). Nonlinear systems modeling based on self-organizing fuzzy-neural-network with adaptive computation algorithm. IEEE Transactions on Cybernetics, 44, 554–564.

    Article  Google Scholar 

  45. Mitra, P., Murthy, C., & Pal, S. K. (2002). Unsupervised feature selection using feature similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 301–312.

    Article  Google Scholar 

  46. Oentaryo, R. J., Pasquier, M., & Quek, C. (2011). RFCMAC: A novel reduced localized neuro-fuzzy system approach to knowledge extraction. Expert Systems with Applications, 38, 12066–12084.

    Article  Google Scholar 

  47. Yu, L., & Liu, H. (2004). Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 5, 1205–1224.

    MathSciNet  MATH  Google Scholar 

  48. Zhang, R., Lan, Y., Huang, G.-B., & Xu, Z.-B. (2012). Universal approximation of extreme learning machine with adaptive growth of hidden nodes. IEEE Transactions on Neural Networks and Learning Systems, 23, 365–371.

    Article  Google Scholar 

  49. Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70, 489–501.

    Article  Google Scholar 

  50. Huang, G.-B., Chen, L., & Siew, C. K. (2006). Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks, 17, 879–892.

    Article  Google Scholar 

  51. Angelov, P. P., & Filev, D. P. (2004). An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34, 484–498.

    Article  Google Scholar 

  52. Angelov, P., & Filev, D. (2005). Simpl_eTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models. In The 14th IEEE international conference on fuzzy systems, 2005. FUZZ’05 (pp. 1068–1073).

    Google Scholar 

  53. Wu, S., & Er, M. J. (2000). Dynamic fuzzy neural networks-a novel approach to function approximation. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 30, 358–364.

    Google Scholar 

  54. Wang, N., Er, M. J., & Meng, X. (2009). A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks. Neurocomputing, 72, 3818–3829.

    Article  Google Scholar 

  55. Zadeh L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning–1. Inf. Sci., 8, 199–249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahardhika Pratama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Za’in, C., Pratama, M., Prasad, M., Puthal, D., Lim, C.P., Seera, M. (2018). Motor Fault Detection and Diagnosis Based on a Meta-cognitive Random Vector Functional Link Network. In: Sayed-Mouchaweh, M. (eds) Fault Diagnosis of Hybrid Dynamic and Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-74014-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74014-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74013-3

  • Online ISBN: 978-3-319-74014-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics